Photo of Maria Kontaridis,  PhD

Maria Kontaridis, PhD

Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center
Phone: (617) 953-8846
Fax: (617) 735-4255


mkontari@bidmc.harvard.edu

Maria Kontaridis, PhD

Beth Israel Deaconess Medical Center

EDUCATIONAL TITLES

  • Assistant Professor, Medicine, Harvard Medical School
  • Assistant Professor, Medicine/Cardiology, Beth Israel Deaconess Medical Center

DF/HCC PROGRAM AFFILIATION

Research Abstract

My research program focuses on the fundamental mechanisms underlying both congenital heart disease and end-stage heart failure, and the mechanisms therein that lead to abnormal development, aberrant molecular signaling, and disease onset. Our lab uses a myriad of tools and techniques including iPS cells, in vivo mouse model systems, and molecular biology techniques. Together, these provide valuable mechanistic and functional information in understanding the differential signaling pathways and developmental processes leading to cardiac disease. Our lab has three main interests: 1) elucidation of the cardiomyogenic defects associated with Noonan and LEOPARD Syndromes, two autosomal dominant congenital disorders primarily caused by unique mutations in the protein tyrosine phosphatase Shp2; 2) understanding the functional role and mechanisms by which Shp2 activity is involved in the development of Systemic Lupus Erythematosus; and 3) elucidating the potential cardioprotective effects of the small G protein RhoA in the adult heart through identification of novel signaling pathways involved in cardiac pathogenesis.

Publications

Powered by Harvard Catalyst
  • Overman JP, Yi JS, Bonetti M, Soulsby M, Preisinger C, Stokes MP, Hui L, Silva JC, Overvoorde J, Giansanti P, Heck AJ, Kontaridis MI, den Hertog J, Bennett AM. PZR coordinates Noonan and LEOPARD syndrome signaling in zebrafish and mice. Mol Cell Biol 2014. PubMed
  • Kontaridis MI. How to get a K award: it is not just about the science. Circ Res 2014; 114:941-3. PubMed
  • Dolmatova E, Spagnol G, Boassa D, Baum JR, Keith K, Ambrosi C, Kontaridis MI, Sorgen PL, Sosinsky GE, Duffy HS. Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 2012; 303:H1208-18. PubMed
  • Lauriol J, Kontaridis MI. PTPN11-associated mutations in the heart: has LEOPARD changed Its RASpots? Trends Cardiovasc. Med. 2012; 21:97-104. PubMed
  • Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, Bronson R, Franchini KG, Neel BG, Kontaridis MI. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 2011; 121:1026-43. PubMed
  • Stewart RA, Sanda T, Widlund HR, Zhu S, Swanson KD, Hurley AD, Bentires-Alj M, Fisher DE, Kontaridis MI, Look AT, Neel BG. Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Dev Cell 2010; 18:750-62. PubMed
  • Kontaridis MI, Yang W, Bence KK, Cullen D, Wang B, Bodyak N, Ke Q, Hinek A, Kang PM, Liao R, Neel BG. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 2008; 117:1423-35. PubMed
  • Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem 2006; 281:6785-92. PubMed
  • Bentires-Alj M, Kontaridis MI, Neel BG. Stops along the RAS pathway in human genetic disease. Nat Med 2006; 12:283-5. PubMed
  • Haider UG, Roos TU, Kontaridis MI, Neel BG, Sorescu D, Griendling KK, Vollmar AM, Dirsch VM. Resveratrol inhibits angiotensin II- and epidermal growth factor-mediated Akt activation: role of Gab1 and Shp2. Mol Pharmacol 2005; 68:41-8. PubMed
  • Kontaridis MI, Eminaga S, Fornaro M, Zito CI, Sordella R, Settleman J, Bennett AM. SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Mol Cell Biol 2004; 24:5340-52. PubMed
  • Ivins Zito C, Kontaridis MI, Fornaro M, Feng GS, Bennett AM. SHP-2 regulates the phosphatidylinositide 3'-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol 2004; 199:227-36. PubMed
  • Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR, Neel BG. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 2004; 13:341-55. PubMed
  • Kontaridis MI, Liu X, Zhang L, Bennett AM. Role of SHP-2 in fibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts. Mol Cell Biol 2002; 22:3875-91. PubMed
Hide