Photo of Shiladitya Sengupta,

Shiladitya Sengupta

Brigham And Women's Hospital

Brigham And Women's Hospital
Phone: (617) 768-8994


ssengupta2@partners.org

Shiladitya Sengupta

Brigham And Women's Hospital

EDUCATIONAL TITLES

  • Assistant Professor, Medicine, Harvard Medical School
  • Assistant Professor, Health Sciences and Technology, Harvard Medical School
  • Associate Bioengineer, Medicine, Brigham And Women's Hospital

DF/HCC PROGRAM AFFILIATION

Research Abstract

Our laboratory is interested in understanding the basic relationships at the cellular level that define a pathological state, and in using this knowledge to develop novel strategies or medicines for treating disease.

How does the cellular microenvironment modulate cellular functions or vice versa? Can the complex sugars that constitute the microenvironment play a cohesive role in intracellular regulation at the protein signaling or genetic levels? These are some key questions that we are probing using novel tools to dissect the complex sugars and connecting what we learn with changes we observe in genetic and protein-signaling. We are using this understanding to engineer novel therapeutic approaches for new drug discovery, for hybrid nanotechnology applications for novel therapeutic strategies, and for regenerative medicine using directed stem cell differentiation.

Reference Publications

Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7957-61. Featured on PNAS Highlights, Forbes, MSN News, CBS, The Telegraph, Yahoo News, Harvard Website.

Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer. 2007 May 7;96(9):1315-9.

Sengupta S*, Eavarone DA*, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. Novel cancer therapy through temporal targeting of both tumor cells and neovasculature using a unique nanoscale delivery system. Nature (2005) 436, 568-572.

 

Publications

Powered by Harvard Catalyst
  • Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, Majumder PK, Sengupta S. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun 2015; 6:6139. PubMed
  • Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M, Brijwani N, Pinto DD, Prasath A, Shanthappa BU, Thayakumar A, Surendran R, Babu GK, Shenoy AM, Kuriakose MA, Bergthold G, Horowitz P, Loda M, Beroukhim R, Agarwal S, Sengupta S, Sundaram M, Majumder PK. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 2015; 6:6169. PubMed
  • Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, Phipps C, Kopparam J, Oh M, Basu S, Kohandel M, Sengupta S. Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy. Cancer Res 2014; 74:675-85. PubMed
  • Kulkarni AA, Roy B, Rao PS, Wyant GA, Mahmoud A, Ramachandran M, Sengupta P, Goldman A, Kotamraju VR, Basu S, Mashelkar RA, Ruoslahti E, Dinulescu DM, Sengupta S. Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy. Cancer Res 2013; 73:6987-97. PubMed
  • Papa AL, Sidiqui A, Balasubramanian SU, Sarangi S, Luchette M, Sengupta S, Harfouche R. PEGylated liposomal Gemcitabine: insights into a potential breast cancer therapeutic. Cell Oncol (Dordr) 2013; 36:449-57. PubMed
  • Sarangi S, Pandey A, Papa AL, Sengupta P, Kopparam J, Dadwal U, Basu S, Sengupta S. P2Y12 receptor inhibition augments cytotoxic effects of cisplatin in breast cancer. Med Oncol 2013; 30:567. PubMed
  • Sengupta S, Kulkarni A. Design principles for clinical efficacy of cancer nanomedicine: a look into the basics. ACS Nano 2013; 7:2878-82. PubMed
  • Papa AL, Basu S, Sengupta P, Banerjee D, Sengupta S, Harfouche R. Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells. BMC Cancer 2012; 12:419. PubMed
  • Sengupta P, Basu S, Soni S, Pandey A, Roy B, Oh MS, Chin KT, Paraskar AS, Sarangi S, Connor Y, Sabbisetti VS, Kopparam J, Kulkarni A, Muto K, Amarasiriwardena C, Jayawardene I, Lupoli N, Dinulescu DM, Bonventre JV, Mashelkar RA, Sengupta S. Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci U S A 2012; 109:11294-9. PubMed
  • Sengupta P, Basu S, Sengupta S. Cancer, Signal Transduction and Nanotechnology. 2011. PubMed
  • Piecewicz S, Sengupta S. The Dynamic Glycome Microenvironment and Stem Cell Differentiation into Vasculature. Stem Cells Dev 2011. PubMed
  • Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. 2011; 3:3. PubMed
  • Sinha Roy R, Soni S, Harfouche R, Vasudevan PR, Holmes O, de Jonge H, Rowe A, Paraskar A, Hentschel DM, Chirgadze D, Blundell TL, Gherardi E, Mashelkar RA, Sengupta S. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis. Proc Natl Acad Sci U S A 2010; 107:13608-13. PubMed
  • Paraskar AS, Soni S, Chin KT, Chaudhuri P, Muto KW, Berkowitz J, Handlogten MW, Alves NJ, Bilgicer B, Dinulescu DM, Mashelkar RA, Sengupta S. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci U S A 2010; 107:12435-40. PubMed
  • Agarwal S, Dugar D, Sengupta S. Ranking chemical structures for drug discovery: a new machine learning approach. J Chem Inf Model 2010; 50:716-31. PubMed
  • Chaudhuri P, Harfouche R, Soni S, Hentschel DM, Sengupta S. Shape effect of carbon nanovectors on angiogenesis. ACS Nano 2010; 4:574-82. PubMed
  • Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 2009; 21:025102. PubMed
  • Harfouche R, Hentschel DM, Piecewicz S, Basu S, Print C, Eavarone D, Kiziltepe T, Sasisekharan R, Sengupta S. Glycome and transcriptome regulation of vasculogenesis. Circulation 2009; 120:1883-92. PubMed
  • Basu S, Chaudhuri P, Sengupta S. Targeting oncogenic signaling pathways by exploiting nanotechnology. Cell Cycle 2009; 8:3480-7. PubMed
  • Bocangel D, Sengupta S, Mitra S, Bhakat KK. p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 2009; 29:3741-50. PubMed
  • Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano 2009; 3:2505-14. PubMed
  • Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S.. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A 2009; 106:7957-61.
Hide