• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources



Blood current issue
Blood RSS feed -- current issue

Proteases, and specifically metalloproteinases, have been linked to the loss of platelet function during storage before transfusion, but the underlying mechanisms remain unknown. We used a dedicated N-terminomics technique, iTRAQ terminal amine isotopic labeling of substrates (TAILS), to characterize the human platelet N-terminome, proteome, and posttranslational modifications throughout platelet storage over 9 days under blood-banking conditions. From the identified 2938 proteins and 7503 unique peptides, we characterized N-terminal methionine excision, co- and posttranslational Nα acetylation, protein maturation, and proteolytic processing of proteins in human platelets. We also identified for the first time 10 proteins previously classified by the Human Proteome Organization as "missing" in the human proteome. Most N termini (77%) were internal neo-N termini (105 were novel potential alternative translation start sites, and 2180 represented stable proteolytic products), thus highlighting a prominent yet previously uncharacterized role of proteolytic processing during platelet storage. Protease inhibitor studies revealed metalloproteinases as being primarily responsible for proteolytic processing (as opposed to degradation) during storage. System-wide identification of metalloproteinase and other proteinase substrates and their respective cleavage sites suggests novel mechanisms of the effect of proteases on protein activity and platelet function during storage. All data sets and metadata are available through ProteomeXchange with the data set identifier PXD000906.

Allogeneic hematopoietic stem cell transplantation (HSCT) has been considered as the treatment of choice for patients with high-risk chronic lymphocytic leukemia (HR-CLL; ie, refractory to purine analogs, short response [<24 months] to chemoimmunotherapy, and/or presence of del[17p]/TP53 mutations). Currently, treatment algorithms for HR-CLL are being challenged by the introduction of novel classes of drugs. Among them, BCR signal inhibitors (BCRi) and B-cell lymphoma 2 antagonists (BCL2a) appear particularly promising. As a result of the growing body of favorable outcome data reported for BCRi/BCL2a, uncertainty is emerging on how to advise patients with HR-CLL about indication for and timing of HSCT. This article provides an overview of currently available evidence and theoretical considerations to guide this difficult decision process. Until the risks and benefits of different treatment strategies are settled, all patients with HR-CLL should be considered for treatment with BCRi/BCL2a. For patients who respond to these agents, there are 2 treatment possibilities: (1) performing an HSCT or (2) continuing treatment with the novel drug. Individual disease-specific and transplant-related risk factors, along with patient’s preferences, should be taken into account when recommending one of these treatments over the other.

Invasive fungal diseases (IFDs) represent an important cause of treatment failure in adults with acute leukemia. Because of leukemia’s heterogeneity, the risk for IFDs is highly variable. We therefore apply a risk-adapted antifungal strategy with strong emphasis on pretreatment and day-15 posttreatment to allow earlier and more individualized interventions. We determine pretreatment risks for IFDs based on 4 factors: (1) host fitness for standard therapy (ie, fit, unfit, or frail); (2) leukemia resistance (high vs low probability of achieving complete remission [CR]); (3) anticipated treatment-related toxicity such as neutropenia, mucositis, and steroid-induced immunosuppression; and (4) patient exposure to opportunistic fungi. Accordingly, we stratify patients as high, intermediate, or low risk for IFDs and apply risk-adapted antifungal strategies, including primary or secondary prophylaxis and diagnostic-based preemptive or empiric therapy. Prevention of IFDs also relies on optimizing organ function, decreasing exposure to opportunistic fungi, and improving net state of immunosuppression with use of better-tolerated and investigational agents for unfit patients and those with adverse leukemia biology. Novel targeted and safe therapies that can achieve higher rates of sustained CR among patients with adverse genetics offer the best promise for reducing the burden of IFDs in these patients.

This largest prospective multicenter trial for adult patients with Burkitt lymphoma/leukemia aimed to prove the efficacy and feasibility of short-intensive chemotherapy combined with the anti-CD20 antibody rituximab. From 2002 to 2011, 363 patients 16 to 85 years old were recruited in 98 centers. Treatment consisted of 6 5-day chemotherapy cycles with high-dose methotrexate, high-dose cytosine arabinoside, cyclophosphamide, etoposide, ifosphamide, corticosteroids, and triple intrathecal therapy. Patients >55 years old received a reduced regimen. Rituximab was given before each cycle and twice as maintenance, for a total of 8 doses. The rate of complete remission was 88% (319/363); overall survival (OS) at 5 years, 80%; and progression-free survival, 71%; with significant difference between adolescents, adults, and elderly patients (OS rate of 90%, 84%, and 62%, respectively). Full treatment could be applied in 86% of the patients. The most important prognostic factors were International Prognostic Index (IPI) score (0-2 vs 3-5; P = .0005), age-adjusted IPI score (0-1 vs 2-3; P = .0001), and gender (male vs female; P = .004). The high cure rate in this prospective trial with a substantial number of participating hospitals demonstrates the efficacy and feasibility of chemoimmunotherapy, even in elderly patients. This trial was registered at www.clinicaltrials.gov as #NCT00199082.

This multinational, randomized, single-blind trial investigated the safety and efficacy of nonacog beta pegol, a recombinant glycoPEGylated factor IX (FIX) with extended half-life, in 74 previously treated patients with hemophilia B (FIX activity ≤2 IU/dL). Patients received prophylaxis for 52 weeks, randomized to either 10 IU/kg or 40 IU/kg once weekly or to on-demand treatment of 28 weeks. No patients developed inhibitors, and no safety concerns were identified. Three hundred forty-five bleeding episodes were treated, with an estimated success rate of 92.2%. The median annualized bleeding rates (ABRs) were 1.04 in the 40 IU/kg prophylaxis group, 2.93 in the 10 IU/kg prophylaxis group, and 15.58 in the on-demand treatment group. In the 40 IU/kg group, 10 (66.7%) of 15 patients experienced no bleeding episodes into target joints compared with 1 (7.7%) of 13 patients in the 10 IU/kg group. Health-related quality of life (HR-QoL) assessed with the EuroQoL-5 Dimensions visual analog scale score improved from a median of 75 to 90 in the 40 IU/kg prophylaxis group. Nonacog beta pegol was well tolerated and efficacious for the treatment of bleeding episodes and was associated with low ABRs in patients receiving prophylaxis. Once-weekly prophylaxis with 40 IU/kg resolved target joint bleeds in 66.7% of the affected patients and improved HR-QoL. This trial was registered at www.clinicaltrials.gov as #NCT01333111.

Apoptosis and the DNA damage responses have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of caspase-9 (Casp9), the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B-cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9-deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9-deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies.

Myeloid differentiation 88 (MyD88) is the key signaling adapter of Toll-like and interleukin-1 receptors. Recurrent lymphoma-associated mutations, particularly Leu265Pro (L265P), within the MyD88 Toll/interleukin-1 receptor (TIR) domain sustain lymphoma cell survival due to constitutive nuclear factor B signaling. We found that mutated TIR domains displayed an intrinsic propensity for augmented oligomerization and spontaneous formation of cytosolic Myddosome aggregates in lymphoma cell lines, mimicking the effect of dimerized TIR domains. Blocking of MyD88 oligomerization induced apoptosis. The L265P TIR domain can recruit the endogenous wild-type MyD88 for oligomer formation and hyperactivity. Molecular dynamics simulations and analysis of additional mutations suggest that constitutive activity is caused by allosteric oligomerization.

Thymocyte selection-associated high mobility group box protein family member 2 (TOX2) is a transcription factor belonging to the TOX family that shares a highly conserved high mobility group DNA-binding domain with the other TOX members. Although TOX1 has been shown to be an essential regulator of T-cell and natural killer (NK) cell differentiation in mice, little is known about the roles of the other TOX family members in lymphocyte development, particularly in humans. In this study, we found that TOX2 was preferentially expressed in mature human NK cells (mNK) and was upregulated during in vitro differentiation of NK cells from human umbilical cord blood (UCB)-derived CD34+ cells. Gene silencing of TOX2 intrinsically hindered the transition between early developmental stages of NK cells, whereas overexpression of TOX2 enhanced the development of mNK cells from UCB CD34+ cells. We subsequently found that TOX2 was independent of ETS-1 but could directly upregulate the transcription of TBX21 (encoding T-BET). Overexpression of T-BET rescued the TOX2 knockdown phenotypes. Given the essential function of T-BET in NK cell differentiation, TOX2 therefore plays a crucial role in controlling normal NK cell development by acting upstream of TBX21 transcriptional regulation.

Therapeutic natural killer (NK)-cell–mediated alloreactivity toward acute myeloid leukemia has largely been attributed to mismatches between killer immunoglobulin-like receptors (KIRs) on NK cells and their ligands, HLA class I molecules, on target cells. While adult acute B-cell precursor leukemia (BCP-ALL) appears to be resistant to NK-cell–mediated lysis, recent data indicate that pediatric BCP-ALL might yet be a target of NK cells. In this study, we demonstrate in a donor-patient–specific NOD.Cg-Prkdcscid IL2rgtmWjl/Sz (NSG) xenotransplantation model that NK cells mediate considerable alloreactivity toward pediatric BCP-ALL in vivo. Notably, both adoptively transferred mature KIR+ NK cells and immature KIR NK cells arising early posttransplantation in humanized NSG mice exerted substantial antileukemic activity. Low-dose and long-term treatment of humanized NSG mice with the DNA-demethylating agent 5-aza-cytidine distinctly enhanced the antitumor response, interestingly without inducing common inhibitory KIR expression but rather by promoting the differentiation of various NK-cell precursor subsets. Collectively, these data indicate that the future design of innovative therapy protocols should consider further exploitation of NK-cell–mediated immune responses for poor prognosis pediatric BCP-ALL patients.

The acquisition of growth signal self-sufficiency is 1 of the hallmarks of cancer. We previously reported that the murine interleukin-9–dependent TS1 cell line gives rise to growth factor–independent clones with constitutive activation of the Janus kinase (JAK)- signal transducer and activator of transcription (STAT) pathway. Here, we show that this transforming event results from activating mutations either in JAK1, JAK3, or in both kinases. Transient and stable expression of JAK1 and/or JAK3 mutants showed that each mutant induces STAT activation and that their coexpression further increases this activation. The proliferation of growth factor–independent TS1 clones can be efficiently blocked by JAK inhibitors such as ruxolitinib or CMP6 in short-term assays. However, resistant clones occur upon long-term culture in the presence of inhibitors. Surprisingly, resistance to CMP6 was not caused by the acquisition of secondary mutations in the adenosine triphosphate–binding pocket of the JAK mutant. Indeed, cells that originally showed a JAK1-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK3, whereas cells that originally showed a JAK3-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK1. These observations underline the cooperation between JAK1 and JAK3 mutants in T-cell transformation and represent a new mechanism of acquisition of resistance against JAK inhibitors.

Obesity is associated with poorer event-free survival (EFS) in pediatric acute lymphoblastic leukemia (ALL). Persistent minimal residual disease (MRD) in the bone marrow as measured by multidimensional flow cytometry (MDF) is a key early prognostic indicator and is strongly associated with EFS. We therefore hypothesized that obesity during induction would be associated with positive end-of-induction MRD (≥0.01%). We analyzed MDF of end-induction bone marrow samples from a historical cohort of 198 children newly diagnosed with B-precursor ALL (BP-ALL) and treated with Children’s Oncology Group induction regimens. We assessed the influence of body mass index on risk for positive end-induction MRD in the bone marrow. In our cohort of BP-ALL, 30 children (15.2%) were overweight and 41 (20.7%) were obese at diagnosis. Independent of established predictors of treatment response, obesity during induction was associated with significantly greater risk for persistent MRD (odds ratio, 2.57; 95% confidence interval, 1.19 to 5.54; P = .016). Obesity and overweight were associated with poorer EFS irrespective of end-induction MRD (P = .012). Obese children with newly diagnosed BP-ALL are at increased risk for positive end-induction MRD and poorer EFS.

Apoptosis plays a role in normal lymphopoiesis and lymphoid malignancies. Pro-survival MCL-1 is essential for survival of T-cell progenitors, BCL-XL for immature thymocytes, and BCL-2 for mature T cells. Conversely, little is known about the regulators that are required for the survival of T-cell lymphomas. We used constitutive and conditionally gene-targeted mice to investigate which pro-survival BCL-2 family member is required for the sustained survival of thymic lymphomas initiated by loss of p53. Constitutive loss of a single Mcl-1 allele delayed tumor onset. In contrast, lymphomas emerging in p53–/– mice in which Mcl-1 could be conditionally deleted had been selected for retention of MCL-1 expression. In contrast, complete loss of BCL-XL had no impact on lymphoma development in p53–/– mice. These results demonstrate that thymic lymphomas elicited by loss of p53 must arise from cancer-initiating cells that require MCL-1 for their survival. Acute deletion of both Mcl-1 alleles abrogated the expansion of p53–/– lymphomas in mice, whereas inducible loss of BCL-XL had little impact. This reveals that MCL-1 is essential for the sustained survival of these malignant cells and suggests that targeting MCL-1 may be an attractive strategy for the treatment of T-cell lymphoma.

Oncogenic NRAS mutations are highly prevalent in acute myeloid leukemia (AML). Genetic analysis supports the hypothesis that NRAS mutations cooperate with antecedent molecular lesions in leukemogenesis, but have limited independent prognostic significance. Using short hairpin RNA–mediated knockdown in human cell lines and primary mouse leukemias, we show that AML cells with NRAS/Nras mutations are dependent on continued oncogene expression in vitro and in vivo. Using the Mx1-Cre transgene to inactivate a conditional mutant Nras allele, we analyzed hematopoiesis and hematopoietic stem and progenitor cells (HSPCs) under normal and stressed conditions and found that HSPCs lacking Nras expression are functionally equivalent to normal HSPCs in the adult mouse. Treating recipient mice transplanted with primary NrasG12D AMLs with 2 potent allosteric mitogen-activated protein kinase kinase (MEK) inhibitors (PD0325901 or trametinib/GlaxoSmithKline 1120212) significantly prolonged survival and reduced proliferation but did not induce apoptosis, promote differentiation, or drive clonal evolution. The phosphatidylinositol 3-kinase inhibitor GDC-0941 was ineffective as a single agent and did not augment the activity of PD0325901. All mice ultimately succumbed to progressive leukemia. Together, these data validate oncogenic N-Ras signaling as a therapeutic target in AML and support testing combination regimens that include MEK inhibitors.

The most frequent contributing factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) is the acquisition of a V617F mutation in Janus kinase 2 (JAK2) in hematopoietic stem cells (HSCs). Recent evidence has demonstrated that to drive MPN transformation, JAK2V617F needs to directly associate with a functional homodimeric type I cytokine receptor, suggesting that, although acquiring JAK2V617F may promote disease, there are additional cellular components necessary for MPN development. Here we show that loss of the thrombopoietin (TPO) receptor (MPL) significantly ameliorates MPN development in JAK2V617F+ transgenic mice, whereas loss of TPO only mildly affects the disease phenotype. Specifically, compared with JAK2V617F+ mice, JAK2V617F+Mpl–/– mice exhibited reduced thrombocythemia, neutrophilia, splenomegaly, and neoplastic stem cell pool. The importance of MPL is highlighted as JAK2V617FMpl+/– mice displayed a significantly reduced MPN phenotype, indicating that Mpl level may have a substantial effect on MPN development and severity. Splenomegaly and the increased neoplastic stem cell pool were retained in JAK2V617F+Tpo–/– mice, although thrombocytosis was reduced compared with JAK2V617F+ mice. These results demonstrate that Mpl expression, but not Tpo, is fundamental in the development of JAK2V617F+ MPNs, highlighting an entirely novel target for therapeutic intervention.

Calreticulin (CALR) mutations have been reported in Janus kinase 2 (JAK2)– and myeloproliferative leukemia (MPL)–negative essential thrombocythemia and primary myelofibrosis. In contrast, no CALR mutations have ever been reported in the context of polycythemia vera (PV). Here, we describe 2 JAK2V617F-JAK2exon12–negative PV patients who presented with a CALR mutation in peripheral granulocytes at the time of diagnosis. In both cases, the CALR mutation was a 52-bp deletion. Single burst-forming units–erythroid (BFU-E) from 1 patient were grown in vitro and genotyped: the same CALR del 52-bp mutation was noted in 31 of the 37 colonies examined; 30 of 31 BFU-E were heterozygous for CALR del 52 bp, and 1 of 31 BFU-E was homozygous for CALR del 52 bp. In summary, although unknown mutations leading to PV cannot be ruled out, our results suggest that CALR mutations can be associated with JAK2-negative PV.

Megakaryocytes are highly specialized precursor cells that produce platelets via cytoplasmic extensions called proplatelets. Proplatelet formation (PPF) requires profound changes in microtubule and actin organization. In this work, we demonstrated that DIAPH1 (mDia1), a mammalian homolog of Drosophila diaphanous that works as an effector of the small GTPase Rho, negatively regulates PPF by controlling the dynamics of the actin and microtubule cytoskeletons. Moreover, we showed that inhibition of both DIAPH1 and the Rho-associated protein kinase (Rock)/myosin pathway increased PPF via coordination of both cytoskeletons. We provide evidence that 2 major effectors of the Rho GTPase pathway (DIAPH1 and Rock/myosin II) are involved not only in Rho-mediated stress fibers assembly, but also in the regulation of microtubule stability and dynamics during PPF.

High mobility group box 1 (HMGB1) is a chromatin-binding protein that maintains DNA structure. On cellular activation or injury, HMGB1 is released from activated immune cells or necrotic tissues and acts as a damage-associated molecular pattern to activate Toll-like receptor 4 (TLR4). Little is known concerning HMGB1 release and TLR4 activity and their role in the pathology of inflammation of sickle cell disease (SCD). Circulating HMGB1 levels were increased in both humans and mice with SCD compared with controls. Furthermore, sickle plasma increased HMGB1-dependent TLR4 activity compared with control plasma. HMGB1 levels were further increased during acute sickling events (vasoocclusive crises in humans or hypoxia/reoxygenation injury in mice). Anti-HMGB1 neutralizing antibodies reduced the majority of sickle plasma-induced TLR4 activity both in vitro and in vivo. These findings show that HMGB1 is the major TLR4 ligand in SCD and likely plays a critical role in SCD-mediated inflammation.

Factor XIII (FXIII) stabilizes thrombi against fibrinolysis by cross-linking α2-antiplasmin (α2AP) to fibrin. Cellular FXIII (FXIII-A) is abundant in platelets, but the extracellular functions of this pool are unclear because it is not released by classical secretion mechanisms. We examined the function of platelet FXIII-A using Chandler model thrombi formed from FXIII-depleted plasma. Platelets stabilized FXIII-depleted thrombi in a transglutaminase-dependent manner. FXIII-A activity on activated platelets was unstable and was rapidly lost over 1 hour. Inhibiting platelet activation abrogated the ability of platelets to stabilize thrombi. Incorporating a neutralizing antibody to α2AP into FXIII-depleted thrombi revealed that the stabilizing effect of platelet FXIII-A on lysis was α2AP dependent. Platelet FXIII-A activity and antigen were associated with the cytoplasm and membrane fraction of unstimulated platelets, and these fractions were functional in stabilizing FXIII-depleted thrombi against lysis. Fluorescence confocal microscopy and flow cytometry revealed exposure of FXIII-A on activated membranes, with maximal signal detected with thrombin and collagen stimulation. FXIII-A was evident in protruding caps on the surface of phosphatidylserine-positive platelets. Our data show a functional role for platelet FXIII-A through exposure on the activated platelet membrane where it exerts antifibrinolytic function by cross-linking α2AP to fibrin.

The oral Bruton’s tyrosine kinase inhibitor, ibrutinib, has recently demonstrated high efficiency in patients with relapsed B-cell malignancies. Occurrence of bleeding events has been reported in a subgroup of ibrutinib-treated patients. We demonstrate that ibrutinib selectively inhibits platelet signaling and functions downstream of the collagen receptor glycoprotein VI and strongly affects firm platelet adhesion on von Willebrand factor (VWF) under arterial flow. A longitudinal study of 14 patients indicated a correlation between occurrence of bleeding events and decreased platelet aggregation in response to collagen in platelet-rich plasma and firm adhesion on VWF under arterial flow. The addition of 50% untreated platelets was sufficient to efficiently reverse the effects of ibrutinib, and platelet functions recovered after treatment interruption as physiological platelet renewal occurred. These data have important clinical implications and provide a basis for hemostasis management during ibrutinib treatment.

Life-threatening graft-versus-host disease (GVHD) limits the use of HLA-C-mismatched unrelated donors in transplantation. Clinicians lack criteria for donor selection when HLA-C-mismatched donors are a patient’s only option for cure. We examined the role for HLA-C expression levels to identify permissible HLA-C mismatches. The median fluorescence intensity, a proxy of HLA-C expression, was assigned to each HLA-C allotype in 1975 patients and their HLA-C-mismatched unrelated transplant donors. The association of outcome with the level of expression of patients’ and donors’ HLA-C allotypes was evaluated in multivariable models. Increasing expression level of the patient’s mismatched HLA-C allotype was associated with increased risks of grades III to IV acute GVHD, nonrelapse mortality, and mortality. Increasing expression level among HLA-C mismatches with residue 116 or residue 77/80 mismatching was associated with increased nonrelapse mortality. The immunogenicity of HLA-C mismatches in unrelated donor transplantation is influenced by the expression level of the patient’s mismatched HLA-C allotype. HLA-C expression levels provide new information on mismatches that should be avoided and extend understanding of HLA-C-mediated immune responses in human disease.