• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center
 

Member Resources

Publications

Cancer Research

Cancer Research RSS feed -- current issue
Cancer Research

Inhibitors of EGFR are currently approved for the therapy of metastatic colorectal cancer (as well as other tumors), but their benefits are limited by inherent and acquired resistance, whose mechanisms are the subject of intense investigation. It is known that such resistance relies on a handful of genetic lesions and/or extracellular signals bypassing the requirement of EGF for cell proliferation and survival. As recently shown, these mechanisms may imply oncogenic activation of MET or its stimulation by the ligand hepatocyte growth factor. However, it is still largely obscure if sensitivity or resistance to EGFR inhibitors operates in cancer stem cells. Convincing evidence indicates that this elusive cell subpopulation is present at the roots of colorectal cancer. Conceivably, cancer stem cells accumulate the genetic lesions driving tumor onset and progression, as well as the genetic determinants of sensitivity or resistance to conventional and targeted therapies. Recent studies enlighten the expression of functional EGFR and MET in colorectal cancer stem cells and the outcome of their inhibition. Evidence is provided that, in patients sensitive to EGFR therapy, association of MET inhibitors fosters cancer stem cell eradication and durable tumor regression. Cancer Res; 74(14); 3647–51. ©2014 AACR.

Adenosine targeting is an attractive new approach to cancer treatment, but no clinical study has yet examined adenosine inhibition in oncology despite the safe clinical profile of adenosine A2A receptor inhibitors (A2ARi) in Parkinson disease. Metastasis is the main cause of cancer-related deaths worldwide, and therefore we have studied experimental and spontaneous mouse models of melanoma and breast cancer metastasis to demonstrate the efficacy and mechanism of a combination of A2ARi in combination with anti-PD-1 monoclonal antibody (mAb). This combination significantly reduces metastatic burden and prolongs the life of mice compared with either monotherapy alone. Importantly, the combination was only effective when the tumor expressed high levels of CD73, suggesting a tumor biomarker that at a minimum could be used to stratify patients that might receive this combination. The mechanism of the combination therapy was critically dependent on NK cells and IFNγ, and to a lesser extent, CD8+ T cells and the effector molecule, perforin. Overall, these results provide a strong rationale to use A2ARi with anti-PD-1 mAb for the treatment of minimal residual and metastatic disease. Cancer Res; 74(14); 3652–8. ©2014 AACR.

E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin–dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. Cancer Res; 74(14); 3659–72. ©2014 AACR.

For progressive prostate cancer, intermittent androgen deprivation (IAD) is one of the most common and effective treatments. Although this treatment is usually initially effective at regressing tumors, most patients eventually develop castration-resistant prostate cancer (CRPC), for which there is no effective treatment and is generally fatal. Although several biologic mechanisms leading to CRPC development and their relative frequencies have been identified, it is difficult to determine which mechanisms of resistance are developing in a given patient. Personalized therapy that identifies and targets specific mechanisms of resistance developing in individual patients is likely one of the most promising methods of future cancer therapy. Prostate-specific antigen (PSA) is a biomarker for monitoring tumor progression. We incorporated a cell death rate (CDR) function into a previous dynamical PSA model that was highly accurate at fitting clinical PSA data for 7 patients. The mechanism of action of IAD is largely induction of apoptosis, and each mechanism of resistance varies in its CDR dynamics. Thus, we analyze the CDR levels and their time-dependent oscillations to identify mechanisms of resistance to IAD developing in individual patients. Cancer Res; 74(14); 3673–83. ©2014 AACR.

According to the missing-self hypothesis, natural killer (NK) cells survey for target cells that lack MHC-I molecules. The Ly49 receptor family recognizes loss of MHC-I and is critical for educating NK cells, conferring the ability to eliminate transformed or infected cells. In this study, we evaluated their requirement in innate immune surveillance of cancer cells using genetically manipulated mice with attenuated expression of Ly49 receptors (NKCKD) in several models of carcinoma and metastasis. We found that NKCKD mice exhibited uncontrolled tumor growth and metastases. Expression of two MHC-I alleles, H-2Kb and H-2Db, was decreased in tumors from NKCKD mice in support of the likelihood of NK-mediated tumor immunoediting. These tumor cells exhibited directed alterations to their cell surface expression in response to the genetically altered immune environment to evade host recognition. Immunoediting in NKCKD mice was restricted to MHC-I molecules, which are ligands for Ly49 receptors, while expression of Rae-1 and Mult1, ligands for another NK cell receptor, NKG2D, were unaffected. Restoring NK cell education in NKCKD mice with a transgene for the inhibitory self-MHC-I receptor Ly49I restored suppression of cancer onset and growth. Interestingly, immune surveillance mediated by activating Ly49 receptors remained intact in NKCKD mice, as demonstrated by the ability to stimulate the NKG2D receptor with tumor cells or splenocytes expressing Rae-1. Together, our results genetically establish the integral role of Ly49 in NK cell-mediated control of carcinogenesis through MHC-I–dependent missing-self recognition. Cancer Res; 74(14); 3684–94. ©2014 AACR.

Tumor cells must overcome apoptosis to survive throughout metastatic dissemination and distal organ colonization. Here, we show in the Polyoma Middle T mammary tumor model that N-cadherin (Cdh2) expression causes Slug (Snai2) upregulation, which in turn promotes carcinoma cell survival. Slug was dramatically upregulated in metastases relative to primary tumors. Consistent with a role in metastasis, Slug knockdown in carcinoma cells suppressed lung colonization by decreasing cell survival at metastatic sites, but had no effect on tumor cell invasion or extravasation. In support of this idea, Slug inhibition by shRNA sensitized tumor cells to apoptosis by DNA damage, resulting in caspase-3 and PARP cleavage. The prosurvival effect of Slug was found to be caused by direct repression of the proapoptotic gene, Puma (Bbc3), by Slug. Consistent with a pivotal role for a Slug–Puma axis in metastasis, inhibition of Puma by RNA interference in Slug-knockdown cells rescued lung colonization, whereas Puma overexpression in control tumor cells suppressed lung metastasis. The survival function of the Slug–Puma axis was confirmed in human breast cancer cells, where Slug knockdown increased Puma expression and inhibited lung colonization. This study demonstrates a pivotal role for Slug in carcinoma cell survival, implying that disruption of the Slug–Puma axis may impinge on the survival of metastatic cells. Cancer Res; 74(14); 3695–706. ©2014 AACR.

Failure to expeditiously repair DNA at sites of double-strand breaks (DSB) ultimately is an important etiologic factor in cancer development. NBS1 plays an important role in the cellular response to DSB damage. A rare polymorphic variant of NBS1 that resulted in an isoleucine to valine substitution at amino acid position 171 (I171V) was first identified in childhood acute lymphoblastic leukemia. This polymorphic variant is located in the N-terminal region that interacts with other DNA repair factors. In earlier work, we had identified a remarkable number of structural chromosomal aberrations in a patient with pediatric aplastic anemia with a homozygous polymorphic variant of NBS1-I171V; however, it was unclear whether this variant affected DSB repair activity or chromosomal instability. In this report, we demonstrate that NBS1-I171V reduces DSB repair activity through a loss of association with the DNA repair factor MDC1. Furthermore, we found that heterozygosity in this polymorphic variant was associated with breast cancer risk. Finally, we showed that this variant exerted a dominant-negative effect on wild-type NBS1, attenuating DSB repair efficiency and elevating chromosomal instability. Our findings offer evidence that the failure of DNA repair leading to chromosomal instability has a causal impact on the risk of breast cancer development. Cancer Res; 74(14); 3707–15. ©2014 AACR.

Invasion and dissemination of medulloblastoma within the central nervous system is the principal factor predicting medulloblastoma treatment failure and death. Netrin-1 is an axon guidance factor implicated in tumor and vascular biology, including in invasive behaviors. We found that exogenous netrin-1 stimulated invasion of human medulloblastoma cells and endothelial cells in contrast to VEGF-A, which promoted invasion of endothelial cells but not medulloblastoma cells. Furthermore, medulloblastoma cells expressed endogenous netrin-1 along with its receptors, neogenin and UNC5B. Blockades in endogenous netrin-1, neogenin, or UNC5B reduced medulloblastoma invasiveness. Neogenin blockade inhibited netrin-1–induced endothelial cells tube formation and recruitment of endothelial cells into Matrigel plugs, two hallmarks of angiogenesis. In patients with pediatric medulloblastoma, netrin-1 mRNA levels were increased 1.7-fold in medulloblastoma tumor specimens compared with control specimens from the same patient. Immunohistochemical analyses showed that netrin-1 was elevated in medulloblastoma tumors versus cerebellum controls. Notably, urinary levels of netrin-1 were 9-fold higher in patients with medulloblastoma compared with control individuals. Moreover, urinary netrin-1 levels were higher in patients with invasive medulloblastoma compared with patients with noninvasive medulloblastoma. Finally, we noted that urinary netrin-1 levels diminished after medulloblastoma resection in patients. Our results suggest netrin-1 is a candidate biomarker capable of detecting an invasive, disseminated phenotype in patients with medulloblastoma and predicting their disease status. Cancer Res; 74(14); 3716–26. ©2014 AACR.

Glioblastoma multiforme (GBM) is characterized by a pathogenic vasculature that drives aggressive local invasion. Recent work suggests that GBM cells recruit bone marrow–derived progenitor cells (BMDC) to facilitate recurrence after radiotherapy, but how this may be achieved is unclear. In this study, we established the spatiotemporal and regional contributions of perivascular BMDCs (pBMDC) to GBM development. We found an increased recruitment of BMDCs to GBM in response to tumor growth and following radiotherapy. However, in this study, BMDCs did not differentiate into endothelial cells directly but rather provided a perivascular support role. The pBMDCs were shown to associate with tumor vasculature in a highly region-dependent manner, with central vasculature requiring minimal pBMDC support. Region-dependent association of pBMDC was regulated by VEGF. In the absence of VEGF, following radiotherapy or antiangiogenic therapy, we documented an increase in Ang2 that regulated recruitment of pBMDCs to maintain the vulnerable central vasculature. Together, our results strongly suggested that targeting pBMDC influx along with radiation or antiangiogenic therapy would be critical to prevent vascular recurrence of GBM. Cancer Res; 74(14); 3727–39. ©2014 AACR.

Chronic inflammation has been implicated as an etiologic factor in cancer, whereas autophagy may help preserve cancer cell survival but exert anti-inflammatory effects. How these phenomenas interact during carcinogenesis remains unclear. We explored this question in a human bronchial epithelial cell–based model of lung carcinogenesis that is mediated by subchronic exposure to arsenic. We found that sustained overexpression of the pro-inflammatory IL6 promoted arsenic-induced cell transformation by inhibiting autophagy. Conversely, strategies to enhance autophagy counteracted the effect of IL6 in the model. These findings were confirmed and extended in a mouse model of arsenic-induced lung cancer. Mechanistic investigations suggested that mTOR inhibition contributed to the activation of autophagy, whereas IL6 overexpression was sufficient to block autophagy by supporting Beclin-1/Mcl-1 interaction. Overall, our findings argued that chronic inflammatory states driven by IL6 could antagonize autophagic states that may help preserve cancer cell survival and promote malignant progression, suggesting a need to uncouple inflammation and autophagy controls to enable tumor progression. Cancer Res; 74(14); 3740–52. ©2014 AACR.

Neuroblastoma is a pediatric cancer with significant genomic and biologic heterogeneity. p16 and ARF, two important tumor-suppressor genes on chromosome 9p21, are inactivated commonly in most cancers, but paradoxically overexpressed in neuroblastoma. Here, we report that exon γ in p16 is also part of an undescribed long noncoding RNA (lncRNA) that we have termed CAI2 (CDKN2A/ARF Intron 2 lncRNA). CAI2 is a single-exon gene with a poly A signal located in but independent of the p16/ARF exon 3. CAI2 is expressed at very low levels in normal tissue, but is highly expressed in most tumor cell lines with an intact 9p21 locus. Concordant expression of CAI2 with p16 and ARF in normal tissue along with the ability of CAI2 to induce p16 expression suggested that CAI2 may regulate p16 and/or ARF. In neuroblastoma cells transformed by serial passage in vitro, leading to more rapid proliferation, CAI2, p16, and ARF expression all increased dramatically. A similar relationship was also observed in primary neuroblastomas where CAI2 expression was significantly higher in advanced-stage neuroblastoma, independently of MYCN amplification. Consistent with its association with high-risk disease, CAI2 expression was also significantly associated with poor clinical outcomes, although this effect was reduced when adjusted for MYCN amplification. Taken together, our findings suggested that CAI2 contributes to the paradoxical overexpression of p16 in neuroblastoma, where CAI2 may offer a useful biomarker of high-risk disease. Cancer Res; 74(14); 3753–63. ©2014 AACR.

Breast cancer is the most common cancer in women for which the metastatic process is still poorly understood. CD147 is upregulated in breast cancer and has been associated with tumor progression, but little is known about its regulatory mechanisms. In this study, we demonstrated that CD147 was overexpressed in breast cancer tissues and cell lines, and the high expression correlated with tumor invasion and metastasis. We also found that the transcription factors Sp1 and c-Myc could bind to the CD147 promoter and enhance its expression. The CD147 mRNA has a 748-bp 3′-untranslated region (UTR) with many miRNA target sites, suggesting possible regulation by miRNAs. We discovered that miR-22 repressed CD147 expression by directly targeting the CD147 3′UTR. We also determined that miR-22 could indirectly participate in CD147 modulation by downregulating Sp1 expression. miR-22 could form an autoregulatory loop with Sp1, which repressed miR-22 transcription by binding to the miR-22 promoter. Together with the c-Myc–mediated inhibition of miR-22 expression, our investigation identified a miR-22/Sp1/c-Myc network that regulates CD147 gene transcription. In addition, miR-22 overexpression suppressed breast cancer cell invasion, metastasis, and proliferation by targeting CD147 in vitro and in vivo. Furthermore, we found that miR-22 was significantly downregulated in breast cancer tissues and that its expression was inversely correlated with the tumor–node–metastasis stage and lymphatic metastasis in patients. Our study provides the first evidence that an miR-22/Sp1/c-Myc network regulates CD147 upregulation in breast cancer and that miR-22 represses breast cancer invasive and metastatic capacities. Cancer Res; 74(14); 3764–78. ©2014 AACR.

New therapeutic targets are needed that circumvent inherent therapeutic resistance of glioblastoma multiforme (GBM). Here, we report such a candidate target in the uncharacterized adaptor protein hMOB3, which we show is upregulated in GBM. In a search for its biochemical function, we found that hMOB3 specifically interacts with MST1 kinase in response to apoptotic stimuli and cell–cell contact. Moreover, hMOB3 negatively regulated apoptotic signaling by MST1 in GBM cells by inhibiting the MST1 cleavage-based activation process. Physical interaction between hMOB3 and MST1 was essential for this process. In vivo investigations established that hMOB3 sustains GBM cell growth at high cell density and promotes tumorigenesis. Our results suggest hMOB3 as a candidate therapeutic target for the treatment of malignant gliomas. Cancer Res; 74(14); 3779–89. ©2014 AACR.

Neuroblastomas harbor mutations in the nonreceptor anaplastic lymphoma kinase (ALK) in 8% to 9% of cases where they serve as oncogenic drivers. Strategies to reduce ALK activity offer clinical interest based on initial findings with ALK kinase inhibitors. In this study, we characterized phosphotyrosine-containing proteins associated with ALK to gain mechanistic insights in this setting. Flotillin-1 (FLOT1), a plasma membrane protein involved in endocytosis, was identified as a binding partner of ALK. RNAi-mediated attenuation of FLOT1 expression in neuroblastoma cells caused ALK dissociation from endosomes along with membrane accumulation of ALK, thereby triggering activation of ALK and downstream effector signals. These features enhanced the malignant properties of neuroblastoma cells in vitro and in vivo. Conversely, oncogenic ALK mutants showed less binding affinity to FLOT1 than wild-type ALK. Clinically, lower expression levels of FLOT1 were documented in highly malignant subgroups of human neuroblastoma specimens. Taken together, our findings suggest that attenuation of FLOT1-ALK binding drives malignant phenotypes of neuroblastoma by activating ALK signaling. Cancer Res; 74(14); 3790–801. ©2014 AACR.

Von Hippel–Lindau (VHL) disease is a rare autosomal dominant cancer syndrome. A phenomenon known as genetic anticipation has been documented in some hereditary cancer syndromes, where it was proved to relate to telomere shortening. Because studies of this phenomenon in VHL disease have been relatively scarce, we investigated anticipation in 18 Chinese VHL disease families. We recruited 34 parent–child patient pairs (57 patients) from 18 families with VHL disease. Onset age was defined as the age when any symptom or sign of VHL disease first appeared. Anticipation of onset age was analyzed by paired t test and the other two special tests (HV and RY2). Relative telomere length of peripheral leukocytes was measured in 29 patients and 325 healthy controls. Onset age was younger in child than in parent in 31 of the 34 parent–child pairs. Patients in the first generation had older onset age with longer age-adjusted relative telomere length, and those in the next generation had younger onset age with shorter age-adjusted relative telomere length (P < 0.001) in the 10 parent–child pairs from eight families with VHL disease. In addition, relative telomere length was shorter in the 29 patients with VHL disease than in the normal controls (P = 0.003). The anticipation may relate to the shortening of telomere length in patients with VHL in successive generations. These findings indicate that anticipation is present in families with VHL disease and may be helpful for genetic counseling for families with VHL disease families and for further understanding the pathogenesis of VHL disease. Cancer Res; 74(14); 3802–9. ©2014 AACR.

Tamoxifen is one of the most widely used endocrine agents for the treatment of estrogen receptor α (ERα)–positive breast cancer. Although effective in most patients, resistance to tamoxifen is a clinically significant problem and the mechanisms responsible remain elusive. To address this problem, we performed a large scale loss-of-function genetic screen in ZR-75-1 luminal breast cancer cells to identify candidate resistance genes. In this manner, we found that loss of function in the deubiquitinase USP9X prevented proliferation arrest by tamoxifen, but not by the ER downregulator fulvestrant. RNAi-mediated attenuation of USP9X was sufficient to stabilize ERα on chromatin in the presence of tamoxifen, causing a global tamoxifen-driven activation of ERα-responsive genes. Using a gene signature defined by their differential expression after USP9X attenuation in the presence of tamoxifen, we were able to define patients with ERα-positive breast cancer experiencing a poor outcome after adjuvant treatment with tamoxifen. The signature was specific in its lack of correlation with survival in patients with breast cancer who did not receive endocrine therapy. Overall, our findings identify a gene signature as a candidate biomarker of response to tamoxifen in breast cancer. Cancer Res; 74(14); 3810–20. ©2014 AACR.

Intrinsic and acquired resistance to HER-targeting drugs occurs in a significant proportion of HER2-overexpressing breast cancers. Thus, there remains a need to identify predictive biomarkers that could improve patient selection and circumvent these types of drug resistance. Here, we report the identification of neuromedin U (NmU) as an extracellular biomarker in cells resistant to HER-targeted drugs. NmU overexpression occurred in cells with acquired or innate resistance to lapatinib, trastuzumab, neratinib, and afatinib, all of which displayed a similar trend upon short-term exposure, suggesting NmU induction may be an early response. An analysis of 3,489 cases of breast cancer showed NmU to be associated with poor patient outcome, particularly those with HER2-overexpressing tumors independent of established prognostic indicators. Ectopic overexpression of NmU in drug-sensitive cells conferred resistance to all HER-targeting drugs, whereas RNAi-mediated attenuation sensitized cells exhibiting acquired or innate drug resistance. Mechanistic investigations suggested that NmU acted through HSP27 as partner protein to stabilize HER2 protein levels. We also obtained evidence of functional NmU receptors on HER2-overexpressing cells, with the addition of exogenous NmU eliciting an elevation in HER2 and EGFR expression along with drug resistance. Finally, we found that NmU seemed to function in cell motility, invasion, and anoikis resistance. In vivo studies revealed that NmU attenuation impaired tumor growth and metastasis. Taken together, our results defined NmU as a candidate drug response biomarker for HER2-overexpressing cancers and as a candidate therapeutic target to limit metastatic progression and improve the efficacy of HER-targeted drugs. Cancer Res; 74(14); 3821–33. ©2014 AACR.

Reversing abnormal gene silencing in cancer cells due to DNA hypermethylation of promoter CpG islands may offer new cancer prevention or therapeutic approaches. Moreover, such approaches may be broadly applicable to enhance the efficacy of radiotherapy, chemotherapy, or immunotherapy. Here, we demonstrate the powerful utility of a novel gene reporter system to permit studies of the dynamics, mechanisms, and translational relevance of candidate therapies of this type in human colon cancer cells. The reporter system is based on in situ modification of the endogenous locus of the tumor-suppressor gene SFRP1, a pivotal regulator of the Wnt pathway that is silenced by DNA hypermethylation in many colon cancers. The modified SFRP1-GFP reporter allele used remained basally silent, like the unaltered allele, and it was activated only by drug treatments that derepress gene silencing by reversing DNA hypermethylation. We used the established DNA methyltransferase inhibitor (DNMTi) 5-aza-deoxycitidine (DAC) to show how this system can be used to address key questions in the clinical development of epigenetic cancer therapies. First, we defined conditions for which clinically relevant dosing could induce sustained induction of RNA and protein. Second, we found that, in vivo, a more prolonged drug exposure than anticipated was essential to derepress gene silencing in significant cell numbers, and this has implications for generating effective anticancer responses in patients with hematopoietic or solid tumors. Finally, we discovered how histone deacetylase inhibitors (HDACi) alone, when administered to cells actively replicating DNA, can robustly reexpress the silenced gene with no change in promoter methylation status. Taken together, our findings offer a new tool and insights for devising optimal clinical experiments to evaluate DNMTi and HDACi, alone or in combination, and with other cancer treatments, as agents for the epigenetic management and prevention of cancer. Cancer Res; 74(14); 3834–43. ©2014 AACR.

The cell surface transmembrane receptor TM4SF5 has been implicated in hepatocellular carcinoma (HCC), but its candidacy as a therapeutic target has not been evaluated. Building on findings that immunization with a peptide vaccine targeting human TM4SF5 can exert prophylactic and therapeutic effects in a murine model of HCC, we developed a monoclonal antibody to characterize expression of TM4SF5 in HCC and to target its function there as an anticancer strategy. We found that the antibody modulated cell signaling in HCC cells in vitro, reducing cell motility, modulating E-cadherin expression, altering p27kip1 localization, and increasing RhoA activity. Using a mouse xenograft model of human HCC, we documented the in vivo efficacy of the antibody, which suppressed tumor growth in either tumor prevention or treatment designs. Our work offers a preclinical proof of concept for TM4SF5 as a promising target for antibody therapeutics to treat HCC. Cancer Res; 74(14); 3844–56. ©2014 AACR.

Non–small cell lung cancer (NSCLC) is notorious for its paltry responses to first-line therapeutic regimens. In contrast to acquired chemoresistance, little is known about the molecular underpinnings of the intrinsic resistance of chemo-naïve NSCLC. Here we report that intrinsic resistance to paclitaxel in NSCLC occurs at a cell-autonomous level because of the uncoupling of mitotic defects from apoptosis. To identify components that permit escape from mitotic stress–induced death, we used a genome-wide RNAi-based strategy, which combines a high-throughput toxicity screen with a live-cell imaging platform to measure mitotic fate. This strategy revealed that prolonging mitotic arrest with a small molecule inhibitor of the APC/cyclosome could sensitize otherwise paclitaxel-resistant NSCLC. We also defined novel roles for CASC1 and TRIM69 in supporting resistance to spindle poisons. CASC1, which is frequently co-amplified with KRAS in lung tumors, is essential for microtubule polymerization and satisfaction of the spindle assembly checkpoint. TRIM69, which associates with spindle poles and promotes centrosomal clustering, is essential for formation of a bipolar spindle. Notably, RNAi-mediated attenuation of CASC1 or TRIM69 was sufficient to inhibit tumor growth in vivo. On the basis of our results, we hypothesize that tumor evolution selects for a permissive mitotic checkpoint, which may promote survival despite chromosome segregation errors. Attacking this adaptation may restore the apoptotic consequences of mitotic damage to permit the therapeutic eradication of drug-resistant cancer cells. Cancer Res; 74(14); 3857–69. ©2014 AACR.

Cell-cycle inhibition has yet to offer a generally effective approach to cancer treatment, but a full evaluation of different combinations of cell-cycle inhibitors has not been evaluated. Cyclin A2, a core component of the cell cycle, is often aberrantly expressed in cancer where it may impact cell proliferation. In this study, we investigated the role of cyclin A2 in tumorigenesis using a conditional genetic knockout mouse model. Cyclin A2 deletion in oncogene-transformed mouse embryonic fibroblasts (MEF) suppressed tumor formation in immunocompromised mice. These findings were confirmed in mice with cyclin A2–deficient hepatocytes, where a delay in liver tumor formation was observed. Because cyclin A2 acts in complex with Cdk2 in the cell cycle, we explored a hypothesized role for Cdk2 dysregulation in this effect through conditional deletions of both genes. In oncogene-transformed MEFs lacking both genes, tumor formation was strongly suppressed in a manner associated with decreased proliferation, premature senescence, and error-prone recovery from serum deprivation after immortalization. Whereas loss of cyclin A2 led to a compensatory increase in Cdk1 activity, this did not occur with loss of both Cdk2 and cyclin A2. Our work offers a rationale to explore combinations of Cdk1 and Cdk2 inhibitors as a general approach in cancer therapy. Cancer Res; 74(14); 3870–9. ©2014 AACR.

CBP-93872 was previously identified as a G2 checkpoint inhibitor using a cell-based high-throughput screening system. However, its molecular actions as well as cellular targets are largely unknown. Here, we uncovered the molecular mechanisms underlying abrogation of the G2 checkpoint by CBP-93872. CBP-93872 specifically abrogates the DNA double-stranded break (DSB)–induced G2 checkpoint through inhibiting maintenance but not initiation of G2 arrest because of specific inhibition of DSB-dependent ATR activation. Hence, ATR-dependent phosphorylation of Nbs1 and replication protein A 2 upon DSB was strongly suppressed in the presence of CBP-93872. CBP-93872 did not seem to inhibit DNA-end resection, but did inhibit Nbs1-dependent and ssDNA-induced ATR activation in vitro in a dose-dependent manner. Taken together, our results suggest that CBP-93872 is an inhibitor of maintenance of the DSB-specific G2 checkpoint and thus might be a strong candidate as the basis for a drug that specifically sensitizes p53-mutated cancer cells to DSB-inducing DNA damage therapy. Cancer Res; 74(14); 3880–9. ©2014 AACR.

Eradicating cancer stem-like cells (CSC) may be essential to fully eradicate cancer. Metabolic changes in CSC could hold a key to their targeting. Here, we report that the dietary micronutrient selenium can trigger apoptosis of CSC derived from chronic or acute myelogenous leukemias when administered at supraphysiologic but nontoxic doses. In leukemia CSC, selenium treatment activated ATM-p53–dependent apoptosis accompanied by increased intracellular levels of reactive oxygen species. Importantly, the same treatment did not trigger apoptosis in hematopoietic stem cells. Serial transplantation studies with BCR–ABL-expressing CSC revealed that the selenium status in mice was a key determinant of CSC survival. Selenium action relied upon the endogenous production of the cyclooxygenase-derived prostaglandins Δ12-PGJ2 and 15d-PGJ2. Accordingly, nonsteroidal anti-inflammatory drugs and NADPH oxidase inhibitors abrogated the ability of selenium to trigger apoptosis in leukemia CSC. Our results reveal how selenium-dependent modulation of arachidonic acid metabolism can be directed to trigger apoptosis of primary human and murine CSC in leukemia. Cancer Res; 74(14); 3890–901. ©2014 AACR.

A third of patients with epithelial ovarian cancer (OVCA) will not respond to standard treatment. The determination of a robust signature that predicts chemoresponse could lead to the identification of molecular markers for response as well as possible clinical implementation in the future to identify patients at risk of failing therapy. This pilot study was designed to identify biologic processes affecting candidate pathways associated with chemoresponse and to create a robust gene signature for follow-up studies. After identifying common pathways associated with chemoresponse in serous OVCA in three independent gene-expression experiments, we assessed the biologic processes associated with them using The Cancer Genome Atlas (TCGA) dataset for serous OVCA. We identified differential copy-number alterations (CNA), mutations, DNA methylation, and miRNA expression between patients that responded to standard treatment and those who did not or recurred prematurely. We correlated these significant parameters with gene expression to create a signature of 422 genes associated with chemoresponse. A consensus clustering of this signature identified two differentiated clusters with unique molecular patterns: cluster 1 was significant for cellular signaling and immune response (mainly cell-mediated); and cluster 2 was significant for pathways involving DNA-damage repair and replication, cell cycle, and apoptosis. Validation through consensus clustering was performed in five independent OVCA gene-expression experiments. Genes were located in the same cluster with consistent agreement in all five studies (κ coefficient ≥ 0.6 in 4). Integrating high-throughput biologic data have created a robust molecular signature that predicts chemoresponse in OVCA. Cancer Res; 74(14); 3902–12. ©2014 AACR.

The platinum drugs cisplatin, carboplatin, and oxaliplatin are highly utilized in the clinic and as a consequence are extensively studied in the laboratory setting. In this study, we examined the literature and found a significant number of studies (11%–34%) in prominent cancer journals utilizing cisplatin dissolved in DMSO. However, dissolving cisplatin in DMSO for laboratory-based studies results in ligand displacement and changes to the structure of the complex. We examined the effect of DMSO on platinum complexes, including cisplatin, carboplatin, and oxaliplatin, finding that DMSO reacted with the complexes, inhibited their cytotoxicity and their ability to initiate cell death. These results render a substantial portion of the literature on cisplatin uninterpretable. Raising awareness of this significant issue in the cancer biology community is critical, and we make recommendations on appropriate solvation of platinum drugs for research. Cancer Res; 74(14); 3913–22. ©2014 AACR.

Inactivation of p53, the master regulator of cellular stress and damage signals, often allows cells that should die or senesce to live. Loss of Dicer, an RNase III–like enzyme critical in microRNA biogenesis, causes embryonic lethality and activation of the p53 pathway. Several nonhematopoietic cell types that contain inactivated p53 have been shown to survive Dicer deletion, suggesting that p53 loss may protect cells from the negative consequences of Dicer deletion. However, here, we report that loss of p53 did not provide a survival advantage to B cells, as they underwent rapid apoptosis upon Dicer deletion. Moreover, a deficiency in p53 neither rescued the Dicer deletion-induced delay in Myc-driven B-cell lymphomagenesis, nor allowed a single B-cell lymphoma to develop with biallelic deletion of Dicer. A p53 deficiency did, however, restore the pre-B/B-cell phenotype and CD19 surface expression of the lymphomas that emerged in conditional Dicer knockout Eμ-myc transgenic mice. Moreover, p53 loss in transformed B cells did not confer protection from apoptosis, as Dicer deletion in established p53-null B-cell lymphomas induced apoptosis, and all of the 1,260 B-cell lymphoma clones analyzed that survived Cre-mediated Dicer deletion retained at least one allele of Dicer. Moreover, Dicer deletion in lymphomas in vivo reduced tumor burden and prolonged survival. Therefore, inactivation of p53 is insufficient to allow untransformed B cells and B-cell lymphomas to survive without Dicer, presenting a potential therapeutic opportunity for the treatment of B-cell lymphomas. Cancer Res; 74(14); 3923–34. ©2014 AACR.

The JmjC domain histone H3K36me2/me1 demethylase NDY1/KDM2B is overexpressed in various types of cancer. Here we show that knocking down NDY1 in a set of 10 cell lines derived from a broad range of human tumors inhibited their anchorage-dependent and anchorage-independent growth by inducing senescence and/or apoptosis in some and by inhibiting G1 progression in all. We further show that the knockdown of NDY1 in mammary adenocarcinoma cell lines decreased the number, size, and replating efficiency of mammospheres and downregulated the stem cell markers ALDH and CD44, while upregulating CD24. Together, these findings suggest that NDY1 is required for the self-renewal of cancer stem cells and are in agreement with additional findings showing that tumor cells in which NDY1 was knocked down undergo differentiation and a higher number of them is required to induce mammary adenocarcinomas, upon orthotopic injection in animals. Mechanistically, NDY1 functions as a master regulator of a set of miRNAs that target several members of the polycomb complexes PRC1 and PRC2, and its knockdown results in the de-repression of these miRNAs and the downregulation of their polycomb targets. Consistent with these observations, NDY1/KDM2B is expressed at higher levels in basal-like triple-negative breast cancers, and its overexpression is associated with higher rates of relapse after treatment. In addition, NDY1-regulated miRNAs are downregulated in both normal and cancer mammary stem cells. Finally, in primary human breast cancer, NDY1/KDM2B expression correlates negatively with the expression of the NDY1-regulated miRNAs and positively with the expression of their PRC targets. Cancer Res; 74(14); 3935–46. ©2014 AACR.

Loss-of-function mutations in p16INK4A (CDKN2A) occur in approximately 80% of sporadic pancreatic ductal adenocarcinoma (PDAC), contributing to its early progression. Although this loss activates the cell-cycle–dependent kinases CDK4/6, which have been considered as drug targets for many years, p16INK4A-deficient PDAC cells are inherently resistant to CDK4/6 inhibitors. This study searched for targeted therapies that might synergize with CDK4/6 inhibition in this setting. We report that the IGF1R/IR inhibitor BMS-754807 cooperated with the CDK4/6 inhibitor PD-0332991 to strongly block proliferation of p16INK4A-deficient PDAC cells in vitro and in vivo. Sensitivity to this drug combination correlated with reduced activity of the master cell growth regulator mTORC1. Accordingly, replacing the IGF1R/IR inhibitor with the rapalog inhibitor temsirolimus broadened the sensitivity of PDAC cells to CDK4/6 inhibition. Our results establish targeted therapy combinations with robust cytostatic activity in p16INK4A-deficient PDAC cells and possible implications for improving treatment of a broad spectrum of human cancers characterized by p16INK4A loss. Cancer Res; 74(14); 3947–58. ©2014 AACR.

The cyclin D1 gene encodes the regulatory subunit of a holoenyzme that phosphorylates the retinoblastoma protein (pRb) and nuclear respiratory factor (NRF1) proteins. The abundance of cyclin D1 determines estrogen-dependent gene expression in the mammary gland of mice. Using estradiol (E2) and an E2–dendrimer conjugate that is excluded from the nucleus, we demonstrate that E2 delays the DNA damage response (DDR) via an extranuclear mechanism. The E2-induced DDR required extranuclear cyclin D1, which bound ERα at the cytoplasmic membrane and augmented AKT phosphorylation (Ser473) and γH2AX foci formation. In the nucleus, E2 inhibited, whereas cyclin D1 enhanced homology-directed DNA repair. Cyclin D1 was recruited to γH2AX foci by E2 and induced Rad51 expression. Cyclin D1 governs an essential role in the E2-dependent DNA damage response via a novel extranuclear function. The dissociable cytoplasmic function to delay the E2-mediated DDR together with the nuclear enhancement of DNA repair uncovers a novel extranuclear function of cyclin D1 that may contribute to the role of E2 in breast tumorigenesis. Cancer Res; 74(14); 3959–70. ©2014 AACR.

Cancer cells tilt their energy production away from oxidative phosphorylation (OXPHOS) toward glycolysis during malignant progression, even when aerobic metabolism is available. Reversing this phenomenon, known as the Warburg effect, may offer a generalized anticancer strategy. In this study, we show that overexpression of the mitochondrial membrane transport protein UCP2 in cancer cells is sufficient to restore a balance toward oxidative phosphorylation and to repress malignant phenotypes. Altered expression of glycolytic and oxidative enzymes mediated the effects of this metabolic shift. Notably, UCP2 overexpression increased signaling from the master energy-regulating kinase, adenosine monophosphate-activated protein kinase, while downregulating expression of hypoxia-induced factor. In support of recent new evidence about UCP2 function, we found that UCP2 did not function in this setting as a membrane potential uncoupling protein, but instead acted to control routing of mitochondria substrates. Taken together, our results define a strategy to reorient mitochondrial function in cancer cells toward OXPHOS that restricts their malignant phenotype. Cancer Res; 74(14); 3971–82. ©2014 AACR.

Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1–regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell–cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties. Cancer Res; 74(14); 3983–94. ©2014 AACR.

Although specific mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) identify tumors that are responsive to EGFR tyrosine kinase inhibitors (TKI), these genetic alterations are present in only a minority of patients. Patients with tumors expressing wild-type EGFR lack reliable predictive markers of their clinical response to EGFR TKIs. Although epithelial–mesenchymal transition (EMT) has been inversely correlated with the response of cancers to EGFR-targeted therapy, the precise molecular mechanisms underlying this association have not been defined and no specific EMT-associated biomarker of clinical benefit has been identified. Here, we show that during transforming growth factor β (TGFβ)–mediated EMT, inhibition of the microRNAs 200 (miR200) family results in upregulated expression of the mitogen-inducible gene 6 (MIG6), a negative regulator of EGFR. The MIG6-mediated reduction of EGFR occurs concomitantly with a TGFβ-induced EMT-associated kinase switch of tumor cells to an AKT-activated EGFR-independent state. In a panel of 25 cancer cell lines of different tissue origins, we find that the ratio of the expression levels of MIG6 and miR200c is highly correlated with EMT and resistance to erlotinib. Analyses of primary tumor xenografts of patient-derived lung and pancreatic cancers carrying wild-type EGFR showed that the tumor MIG6(mRNA)/miR200 ratio was inversely correlated with response to erlotinib in vivo. Our data demonstrate that the TGFβ–miR200–MIG6 network orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors, and identify a low ratio of MIG6 to miR200 as a promising predictive biomarker of the response of tumors to EGFR TKIs. Cancer Res; 74(14); 3995–4005. ©2014 AACR.