• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center
 

Member Resources

Publications

Cancer Research

Cancer Research RSS feed -- current issue
Cancer Research

Heat shock factor 1 (HSF1) is a stress-inducible transcription factor and has been described as a multi-faceted modulator of tumorigenesis. Heat shock, accumulation of misfolded proteins, or malignant transformation promotes the activation and nuclear translocation of HSF1, where it binds to the promoters of heat shock proteins and an array of nonheat shock–regulated proteins to upregulate their transcription. These stress-responsive and tumor-promoting genes in turn alter the ability of tumor cells to respond to a variety of stresses and enable them to thrive in less than favorable growth conditions. Although a direct role for HSF1 in promoting mRNA transcription of tumor-promoting genes has been suggested, it appears that this property is context- and cell-type dependent. Furthermore, recent studies have demonstrated a direct involvement of mTOR signaling in regulating HSF1-mediated transcription, thus establishing a direct link between protein translation and HSF1 activity. Interestingly, there is a growing understanding of the signaling pathways that are modulated by HSF1 in a variety of tumor types and the co-option of these survival pathways by HSF1 to promote tumorigenesis. This review will focus on the role of HSF1 in protein homeostasis and HSF1-mediated oncogenic signaling pathways that together promote tumorigenesis. Cancer Res; 75(6); 907–12. ©2015 AACR.

During the last decades, the knowledge of cell death mechanisms involved in anticancer therapy has grown exponentially. However, in many studies, cell death is still described in an incomplete manner. The frequent use of indirect proliferation assays, unspecific probes, or bulk analyses leads too often to misunderstandings regarding cell death events. There is a trend to focus on molecular or genetic regulations of cell demise without a proper characterization of the phenotype that is the object of this study. Sometimes, cancer researchers can feel overwhelmed or confused when faced with such a corpus of detailed insights, nomenclature rules, and debates about the accuracy of a particular probe or assay. On the basis of the information available, we propose a simple guide to distinguish forms of cell death in experimental settings using cancer cell lines. Cancer Res; 75(6); 913–7. ©2015 AACR.

We propose that the quantitative cancer biology community makes a concerted effort to apply lessons from weather forecasting to develop an analogous methodology for predicting and evaluating tumor growth and treatment response. Currently, the time course of tumor response is not predicted; instead, response is only assessed post hoc by physical examination or imaging methods. This fundamental practice within clinical oncology limits optimization of a treatment regimen for an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful methodology toward tumor forecasting, it should be possible to integrate large tumor-specific datasets of varied types and effectively defeat one cancer patient at a time. Cancer Res; 75(6); 918–23. ©2015 AACR.

With the goal to remove the roots of cancer, eliminate metastatic seeds, and overcome therapy resistance, the 2014 inaugural International Cancer Stem Cell (CSC) Conference at Cleveland, OH, convened together over 320 investigators, including 55 invited world-class speakers, 25 short oral presenters, and 100 poster presenters, to gain an in-depth understanding of CSCs and explore therapeutic opportunities targeting CSCs. The meeting enabled intriguing discussions on several topics including: genetics and epigenetics; cancer origin and evolution; microenvironment and exosomes; metabolism and inflammation; metastasis and therapy resistance; single cell and heterogeneity; plasticity and reprogramming; as well as other new concepts. Reports of clinical trials targeting CSCs emphasized the urgent need for strategically designing combinational CSC-targeting therapies against cancer. Cancer Res; 75(6); 924–9. ©2015 AACR.

In recent experiments on isogenetic cancer cell lines, it was observed that exposure to high doses of anticancer drugs can induce the emergence of a subpopulation of weakly proliferative and drug-tolerant cells, which display markers associated with stem cell–like cancer cells. After a period of time, some of the surviving cells were observed to change their phenotype to resume normal proliferation and eventually repopulate the sample. Furthermore, the drug-tolerant cells could be drug resensitized following drug washout. Here, we propose a theoretical mechanism for the transient emergence of such drug tolerance. In this framework, we formulate an individual-based model and an integro-differential equation model of reversible phenotypic evolution in a cell population exposed to cytotoxic drugs. The outcomes of both models suggest that nongenetic instability, stress-induced adaptation, selection, and the interplay between these mechanisms can push an actively proliferating cell population to transition into a weakly proliferative and drug-tolerant state. Hence, the cell population experiences much less stress in the presence of the drugs and, in the long run, reacquires a proliferative phenotype, due to phenotypic fluctuations and selection pressure. These mechanisms can also reverse epigenetic drug tolerance following drug washout. Our study highlights how the transient appearance of the weakly proliferative and drug-tolerant cells is related to the use of high-dose therapy. Furthermore, we show how stem-like characteristics can act to stabilize the transient, weakly proliferative, and drug-tolerant subpopulation for a longer time window. Finally, using our models as in silico laboratories, we propose new testable hypotheses that could help uncover general principles underlying the emergence of cancer drug tolerance. Cancer Res; 75(6); 930–9. ©2015 AACR.

Acute myeloid leukemia (AML) is a heterogeneous disease in which a variety of distinct genetic alterations might occur. Recent attempts to identify the leukemia stem-like cells (LSC) have also indicated heterogeneity of these cells. On the basis of mathematical modeling and computer simulations, we have provided evidence that proliferation and self-renewal rates of the LSC population have greater impact on the course of disease than proliferation and self-renewal rates of leukemia blast populations, that is, leukemia progenitor cells. The modeling approach has enabled us to estimate the LSC properties of 31 individuals with relapsed AML and to link them to patient survival. On the basis of the estimated LSC properties, the patients can be divided into two prognostic groups that differ significantly with respect to overall survival after first relapse. The results suggest that high LSC self-renewal and proliferation rates are indicators of poor prognosis. Nevertheless, high LSC self-renewal rate may partially compensate for slow LSC proliferation and vice versa. Thus, model-based interpretation of clinical data allows estimation of prognostic factors that cannot be measured directly. This may have clinical implications for designing treatment strategies. Cancer Res; 75(6); 940–9. ©2015 AACR.

Growing evidence suggests that tumor-associated macrophages (TAM) promote cancer progression and therapeutic resistance by enhancing angiogenesis, matrix-remodeling, and immunosuppression. In this study, prostate cancer under androgen blockade therapy (ABT) was investigated, demonstrating that TAMs contribute to prostate cancer disease recurrence through paracrine signaling processes. ABT induced the tumor cells to express macrophage colony-stimulating factor 1 (M-CSF1 or CSF1) and other cytokines that recruit and modulate macrophages, causing a significant increase in TAM infiltration. Inhibitors of CSF1 signaling through its receptor, CSF1R, were tested in combination with ABT, demonstrating that blockade of TAM influx in this setting disrupts tumor promotion and sustains a more durable therapeutic response compared with ABT alone. Cancer Res; 75(6); 950–62. ©2015 AACR.

Breast tumors are characterized by an extensive desmoplastic stroma, abundantly populated by fibroblasts. Cancer-associated fibroblasts (CAF) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation, and invasion. CAF also orchestrate tumor-promoting inflammation in multiple tumor types, including breast cancer. However, the mechanisms through which normal tissue fibroblasts are reprogrammed to tumor-promoting CAFs are mainly obscure. Here, we show that mammary fibroblasts can be educated by breast cancer cells to become activated to a proinflammatory state that supports malignant progression. Proteomic analysis of breast cancer cell–secreted factors identified the secreted proinflammatory mediator osteopontin, which has been implicated in inflammation, tumor progression, and metastasis. Osteopontin was highly secreted by mouse and human breast cancer cells, and tumor cell–secreted osteopontin activated a CAF phenotypes in normal mammary fibroblasts in vitro and in vivo. Osteopontin was sufficient to induce fibroblast reprogramming and neutralizing antibodies against osteopontin-blocked fibroblast activation induced by tumor cells. The ability of secreted osteopontin to activate mammary fibroblasts relied upon its known receptors CD44 and αVβ3 integrin. Strikingly, osteopontin silencing in tumor cells in vivo attenuated stromal activation and inhibited tumor growth. Our findings establish a critical functional role for paracrine signaling by tumor-derived osteopontin in reprograming normal fibroblasts into tumor-promoting CAFs. Cancer Res; 75(6); 963–73. ©2015 AACR.

RAGE is a multifunctional receptor implicated in diverse processes including inflammation and cancer. In this study, we report that RAGE expression is upregulated widely in aggressive triple-negative breast cancer (TNBC) cells, both in primary tumors and in lymph node metastases. In evaluating the functional contributions of RAGE in breast cancer, we found that RAGE-deficient mice displayed a reduced propensity for breast tumor growth. In an established model of lung metastasis, systemic blockade by injection of a RAGE neutralizing antibody inhibited metastasis development. Mechanistic investigations revealed that RAGE bound to the proinflammatory ligand S100A7 and mediated its ability to activate ERK, NF-κB, and cell migration. In an S100A7 transgenic mouse model of breast cancer (mS100a7a15 mice), administration of either RAGE neutralizing antibody or soluble RAGE was sufficient to inhibit tumor progression and metastasis. In this model, we found that RAGE/S100A7 conditioned the tumor microenvironment by driving the recruitment of MMP9-positive tumor-associated macrophages. Overall, our results highlight RAGE as a candidate biomarker for TNBCs, and they reveal a functional role for RAGE/S100A7 signaling in linking inflammation to aggressive breast cancer development. Cancer Res; 75(6); 974–85. ©2015 AACR.

Immune mechanisms underlying hepatocellular carcinoma (HCC) are not well understood. Here, we show that the Toll-like receptor TLR2 inhibits production of the proinflammatory cytokine IL18 and protects mice from DEN-induced liver carcinogenesis. On this protocol, Tlr2−/− mice exhibited more aggressive HCC development associated with impaired CD8+ T-cell function. Furthermore, Ly6ChighIL18Rα+ myeloid-derived suppressor cells (MDSC) were increased in number in the livers of Tlr2−/− mice before tumor onset. MDSC in this setting exhibited higher iNOS levels that could inhibit IFNγ production and CD8+ T-cell proliferation in vitro. Notably, Tlr2−/− hepatocytes produced more mature IL18 after DEN treatment that was sufficient to drive MDSC accumulation there. IL18 adminstration was sufficient to induce accumulation of MDSC, whereas hepatocyte-specific silencing of IL18 in Tlr2−/− mice decreased the proportion of MDSC, increased the proportion of functional CD8+ T cells, and alleviated HCC progression. IL18 production was mediated by caspase-8 insofar as the decrease in its silencing was sufficient to attenuate levels of mature IL18 in Tlr2−/− mice. Furthermore, the TLR2 agonist Pam3CSK4 inhibited both caspase-8 and IL18 expression, decreasing MDSC, increasing CD8+ T-cell function, and promoting HCC regression. Overall, our findings show how TLR2 deficiency accelerates IL18-mediated immunosuppression during liver carcinogenesis, providing new insights into immune control that may assist the design of effective immunotherapies to treat HCC. Cancer Res; 75(6); 986–95. ©2015 AACR.

The mobilization of bone marrow–derived cells (BMDC) to distant tissues before the arrival of disseminated tumor cells has been shown preclinically to facilitate metastasis through the establishment of metastatic niches. Primary tumor hypoxia has been demonstrated to play a pivotal role in the production of chemokines and cytokines responsible for the mobilization of these BMDCs, especially in breast cancer. Carbonic anhydrase IX (CAIX, CA9) expression is highly upregulated in hypoxic breast cancer cells through the action of hypoxia-inducible factor-1 (HIF1). Preclinical evidence has demonstrated that CAIX is required for breast tumor growth and metastasis; however, the mechanism by which CAIX exerts its prometastatic function is not well understood. Here, we show that CAIX is indispensable for the production of granulocyte colony-stimulating factor (G-CSF) by hypoxic breast cancer cells and tumors in an orthotopic model. Furthermore, we demonstrate that tumor-expressed CAIX is required for the G-CSF–driven mobilization of granulocytic myeloid-derived suppressor cells (MDSC) to the breast cancer lung metastatic niche. We also determined that CAIX expression is required for the activation of NF-κB in hypoxic breast cancer cells and constitutive activation of the NF-κB pathway in CAIX-depleted cells restored G-CSF secretion. Together, these findings identify a novel hypoxia-induced CAIX–NF-κB–G-CSF cellular signaling axis culminating in the mobilization of granulocytic MDSCs to the breast cancer lung metastatic niche. Cancer Res; 75(6); 996–1008. ©2015 AACR.

Cigarette smoking is a major risk factor in the development of non–small cell lung cancer (NSCLC), which accounts for 80% of all lung cancers. Nicotine, the major addictive component of tobacco smoke, can induce proliferation, invasion, and epithelial-to-mesenchymal transition (EMT) in NSCLC cell lines and promote metastasis of NSCLC in mice. Here, we demonstrate that the scaffolding protein β-arrestin-1 is necessary for nicotine-mediated induction of mesenchymal genes vimentin and fibronectin as well as EMT regulators ZEB1 and ZEB2. Nicotine induced changes in cell morphology and ablate tight junctions consistent with EMT; β-arrestin-1, but not β-arrestin-2, was required for these changes. β-Arrestin-1 promoted the expression of the mesenchymal genes, as well as ZEB1 and ZEB2, through the mediation of the E2F1 transcription factor; this required Src kinase activity. Stimulation of multiple NSCLC cell lines with nicotine led to enhanced recruitment of β-arrestin-1 and E2F1 on vimentin, fibronectin, and ZEB1 and ZEB2 promoters. Furthermore, there was significantly more β-arrestin-1 and E2F1 associated with these promoters in human NSCLC tumors, and β-arrestin-1 levels correlated with vimentin and fibronectin levels in human NSCLC samples. A549-luciferase cells lacking β-arrestin-1 showed a significantly reduced capacity for tumor growth and metastasis when orthotopically implanted into the lungs of SCID-beige mice. Taken together, these studies reveal a novel role for β-arrestin-1 in the growth and metastasis of NSCLC. Cancer Res; 75(6); 1009–20. ©2015 AACR.

Prostate cancer subtypes are poorly defined and functional validation of drivers of ETS rearrangement–negative prostate cancer has not been conducted. Here, we identified an ETS− subtype of aggressive prostate cancer (ERG−MAP3K7delCHD1del) and used a novel developmental model and a cell line xenograft model to show that cosuppression of MAP3K7 and CHD1 expression promotes aggressive disease. Analyses of publicly available prostate cancer datasets revealed that MAP3K7 and CHD1 were significantly codeleted in 10% to 20% of localized tumors and combined loss correlated with poor disease-free survival. To evaluate the functional impact of dual MAP3K7–CHD1 loss, we suppressed Map3k7 and/or Chd1 expression in mouse prostate epithelial progenitor/stem cells (PrP/SC) and performed tissue recombination experiments in vivo. Dual shMap3k7–shChd1 PrP/SC recombinants displayed massive glandular atypia with regions of prostatic intraepithelial neoplasia and carcinoma apparent. Combined Map3k7–Chd1 suppression greatly disrupted normal prostatic lineage differentiation; dual recombinants displayed significant androgen receptor loss, increased neuroendocrine differentiation, and increased neural differentiation. Clinical samples with dual MAP3K7–CHD1 loss also displayed neuroendocrine and neural characteristics. In addition, dual Map3k7–Chd1 suppression promoted E-cadherin loss and mucin production in recombinants. MAP3K7 and CHD1 protein loss also correlated with Gleason grade and E-cadherin loss in clinical samples. To further validate the phenotype observed in the PrP/SC model, we suppressed MAP3K7 and/or CHD1 expression in LNCaP prostate cancer cells. Dual shMAP3K7–shCHD1 LNCaP xenografts displayed increased tumor growth and decreased survival compared with shControl, shMAP3K7, and shCHD1 xenografts. Collectively, these data identify coordinate loss of MAP3K7 and CHD1 as a unique driver of aggressive prostate cancer development. Cancer Res; 75(6); 1021–34. ©2015 AACR.

ERBB3, a member of the EGFR family of receptor tyrosine kinases, has been implicated in activation of the PI3K pathway in human lung adenocarcinomas driven by EGFR mutations. We investigated the contribution of ERBB3 to the initiation, progression, and therapeutic response of EGFR-induced lung adenocarcinomas using tetracycline- and tamoxifen-inducible transgenic mouse models. Deletion of Erbb3 at the time of induction of mutant EGFR had no effect on tumorigenesis, demonstrating that ERBB3 is not required to initiate tumorigenesis. Tumors that developed in the absence of ERBB3 remained sensitive to EGFR tyrosine kinase inhibitors and retained activation of the PI3K–AKT pathway. Interestingly, acute loss of Erbb3 suppressed further growth of established EGFRL858R-mediated lung tumors. Four weeks after deletion of Erbb3, the tumors exhibited phosphorylation of EGFR, of the adaptor proteins GAB1 and GAB2, and of the downstream signaling molecules AKT and ERK, suggesting that alternative signaling pathways could compensate for loss of Erbb3. Similar to our observations with mouse tumors, we found that GAB adaptor proteins play a role in ERBB3-independent activation of the PI3K pathway by mutant EGFR in EGFR-mutant human cell lines. Finally, in such cell lines, increased levels of phosphorylation of ERBB2 or MET were associated with reduced sensitivity to acute loss of ERBB3, suggesting remarkable plasticity in the signaling pathways regulated by mutant EGFR with important therapeutic implications. Cancer Res; 75(6); 1035–45. ©2015 AACR.

Interferon regulatory factor-1 (IRF1) is a tumor suppressor that regulates cell fate in several cell types. Here, we report an inverse correlation in expression of nuclear IRF1 and the autophagy regulator ATG7 in human breast cancer cells that directly affects their cell fate. In mice harboring mutant Atg7, nuclear IRF1 was increased in mammary tumors, spleen, and kidney. Mechanistic investigations identified ATG7 and the cell death modulator beclin-1 (BECN1) as negative regulators of IRF1. Silencing ATG7 or BECN1 caused estrogen receptor-α to exit the nucleus at the time when IRF1 nuclear localization occurred. Conversely, silencing IRF1 promoted autophagy by increasing BECN1 and blunting IGF1 receptor and mTOR survival signaling. Loss of IRF1 promoted resistance to antiestrogens, whereas combined silencing of ATG7 and IRF1 restored sensitivity to these agents. Using a mathematical model to prompt signaling hypotheses, we developed evidence that ATG7 silencing could resensitize IRF1-attenuated cells to apoptosis through mechanisms that involve other estrogen-regulated genes. Overall, our work shows how inhibiting the autophagy proteins ATG7 and BECN1 can regulate IRF1-dependent and -independent signaling pathways in ways that engender a new therapeutic strategy to attack breast cancer. Cancer Res; 75(6); 1046–55. ©2015 AACR.

Short-term starvation or fasting can augment cancer treatment efficacy and can be effective in delaying cancer progression in the absence of chemotherapy, but the underlying molecular mechanisms of action remain elusive. Here, we describe the role of REV1, a specialized DNA polymerase involved in DNA repair, as an important signaling node linking nutrient sensing and metabolic control to cell fate. We show that REV1 is a novel binding partner of the tumor suppressor p53 and regulates its activity. Under starvation, REV1 is modified by SUMO2/3, resulting in the relief of REV1′s inhibition of p53 and enhancing p53′s effects on proapoptotic gene expression and apoptosis in breast cancer and melanoma cells. Thus, fasting in part through its effect on REV1 is a promising nontoxic strategy to increase p53-dependent cell death and to enhance the efficacy of cancer therapies. Cancer Res; 75(6); 1056–67. ©2015 AACR.

Merkel cell polyomavirus (MCPyV) is frequently associated with Merkel cell carcinoma (MCC), a highly aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated copies of the viral genome with persistent expression of the MCPyV large T (LT) and small T (ST) antigen. MCPyV isolated from MCC typically contains wild-type ST but truncated forms of LT that retain the N-terminus but delete the C-terminus and render LT incapable of supporting virus replication. To determine the oncogenic activity of MCC tumor-derived T antigens in vivo, a conditional, tissue-specific mouse model was developed. Keratin 14-mediated Cre recombinase expression induced expression of MCPyV T antigens in stratified squamous epithelial cells and Merkel cells of the skin epidermis. Mice expressing MCPyV T antigens developed hyperplasia, hyperkeratosis, and acanthosis of the skin with additional abnormalities in whisker pads, footpads, and eyes. Nearly half of the mice also developed cutaneous papillomas. Evidence for neoplastic progression within stratified epithelia included increased cellular proliferation, unscheduled DNA synthesis, increased E2F-responsive genes levels, disrupted differentiation, and presence of a DNA damage response. These results indicate that MCPyV T antigens are tumorigenic in vivo, consistent with their suspected etiologic role in human cancer. Cancer Res; 75(6); 1068–79. ©2015 AACR.

There remains a great need for effective therapies for lung cancer, the majority of which are non–small cell lung cancers (NSCLC). Here, we report the identification of a novel candidate therapeutic target, LUNX, as a molecule overexpressed in primary NSCLC and lymph node metastases that is associated with reduced postoperative survival. Functional studies demonstrated that LUNX overexpression promoted lung cancer cell migration and proliferation by interactions with the chaperone protein 14-3-3. Conversely, LUNX silencing disrupted primary tumor growth, local invasion, and metastatic colonization. The finding that LUNX was expressed on cell membranes prompted us to generate and characterize LUNX antibodies as a candidate therapeutic. Anti-LUNX could downregulate LUNX and reduce lung cancer cell proliferation and migration in vitro. Administered in vivo to mice bearing lung cancer xenografts, anti-LUNX could slow tumor growth and metastasis and improve mouse survival. Together, our work provides a preclinical proof of concept for LUNX as a novel candidate target for immunotherapy in lung cancer. Cancer Res; 75(6); 1080–90. ©2015 AACR.

Mutated KRAS (KRAS*) is a fundamental driver in the majority of pancreatic ductal adenocarcinomas (PDAC). Using an inducible mouse model of KRAS*-driven PDAC, we compared KRAS* genetic extinction with pharmacologic inhibition of MEK1 in tumor spheres and in vivo. KRAS* ablation blocked proliferation and induced apoptosis, whereas MEK1 inhibition exerted cytostatic effects. Proteomic analysis evidenced that MEK1 inhibition was accompanied by a sustained activation of the PI3K–AKT–MTOR pathway and by the activation of AXL, PDGFRa, and HER1–2 receptor tyrosine kinases (RTK) expressed in a large proportion of human PDAC samples analyzed. Although single inhibition of each RTK alone or plus MEK1 inhibitors was ineffective, a combination of inhibitors targeting all three coactivated RTKs and MEK1 was needed to inhibit proliferation and induce apoptosis in both mouse and human low-passage PDAC cultures. Importantly, constitutive AKT activation, which may mimic the fraction of AKT2-amplified PDAC, was able to bypass the induction of apoptosis caused by KRAS* ablation, highlighting a potential inherent resistance mechanism that may inform the clinical application of MEK inhibitor therapy. This study suggests that combinatorial-targeted therapies for pancreatic cancer must be informed by the activation state of each putative driver in a given treatment context. In addition, our work may offer explanative and predictive power in understanding why inhibitors of EGFR signaling fail in PDAC treatment and how drug resistance mechanisms may arise in strategies to directly target KRAS. Cancer Res; 75(6); 1091–101. ©2015 AACR.

The translation initiation factor eIF4E is an oncogene that is commonly overexpressed in primary breast cancers and metastases. In this article, we report that a pharmacologic inhibitor of eIF4E function, ribavirin, safely and potently suppresses breast tumor formation. Ribavirin administration blocked the growth of primary breast tumors in several murine models and reduced the development of lung metastases in an invasive model. Mechanistically, eIF4E silencing or blockade reduced the invasiveness and metastatic capability of breast cancer cells in a manner associated with decreased activity of matrix metalloproteinase (MMP)-3 and MMP-9. Furthermore, eIF4E silencing or ribavirin treatment suppressed features of epithelial-to-mesenchymal transition, a process crucial for metastasis. Our findings offer a preclinical rationale to explore broadening the clinical evaluation of ribavirin, currently being tested in patients with eIF4E-overexpressing leukemia, as a strategy to treat solid tumors such as metastatic breast cancer. Cancer Res; 75(6); 1102–12. ©2015 AACR.

Tumor-initiating cells (TIC) perpetuate tumor growth, enable therapeutic resistance, and drive initiation of successive tumors. Virtually nothing is known about the role of mechanotransductive signaling in controlling TIC tumorigenesis, despite the recognized importance of altered mechanics in tissue dysplasia and the common observation that extracellular matrix (ECM) stiffness strongly regulates cell behavior. To address this open question, we cultured primary human glioblastoma (GBM) TICs on laminin-functionalized ECMs spanning a range of stiffnesses. Surprisingly, we found that these cells were largely insensitive to ECM stiffness cues, evading the inhibition of spreading, migration, and proliferation typically imposed by compliant ECMs. We hypothesized that this insensitivity may result from insufficient generation of myosin-dependent contractile force. Indeed, we found that both pharmacologic and genetic activation of cell contractility through RhoA GTPase, Rho-associated kinase, or myosin light chain kinase restored stiffness-dependent spreading and motility, with TICs adopting the expected rounded and nonmotile phenotype on soft ECMs. Moreover, constitutive activation of RhoA restricted three-dimensional invasion in both spheroid implantation and Transwell paradigms. Orthotopic xenotransplantation studies revealed that control TICs formed tumors with classical GBM histopathology including diffuse infiltration and secondary foci, whereas TICs expressing a constitutively active mutant of RhoA produced circumscribed masses and yielded a 30% enhancement in mean survival time. This is the first direct evidence that manipulation of mechanotransductive signaling can alter the tumor-initiating capacity of GBM TICs, supporting further exploration of these signals as potential therapeutic targets and predictors of tumor-initiating capacity within heterogeneous tumor cell populations. Cancer Res; 75(6); 1113–22. ©2015 AACR.

Glioma-initiating cells (GIC) have stem-like cell properties thought to be sufficient for recurrence, progression, and drug resistance in glioblastomas. In the present study, we defined miRNA (miR)-340 as a differentially expressed miRNA in human GICs that inhibit GIC-mediated tumorigenesis. Furthermore, we defined tissue plasminogen activator (PLAT) as a critical direct target of miR340 for inhibition. Among miRNAs screened, we found that miR340 expression was decreased in all human GICs and in human glioblastoma tissues, compared with human neural stem cells and normal brain tissues. miR340 overexpression in GICs suppressed their proliferative, invasive, and migratory properties in vitro, triggering cell senescence in vitro and inhibiting GIC-induced tumorigenesis in mouse brains. shRNA-mediated silencing of PLAT in GICs phenocopied the effects of miR340 overexpression in vitro and in vivo, suggesting a potential role for tissue factor in stem-like cell function. Taken together, our results identified miR340 as a tumor suppressor that functions in GIC to enforce PLAT blockade and ablate their stem-like functions. Cancer Res; 75(6); 1123–33. ©2015 AACR.

Aging is the major determinant of cancer incidence, which, in turn, is likely dictated in large part by processes that influence the progression of early subclinical (occult) cancers. However, there is little understanding of how aging informs changes in aggregate host signaling that favor cancer progression. In this study, we provide direct evidence that aging can serve as an organizing axis to define cancer progression-modulating processes. As a model system to explore this concept, we employed adolescent (68 days), young adult (143 days), middle-aged (551 days), and old (736 days) C57BL/6 mice as syngeneic hosts for engraftment of Lewis lung cancer to identify signaling and functional processes varying with host age. Older hosts exhibited dysregulated angiogenesis, metabolism, and apoptosis, all of which are associated with cancer progression. TGFβ1, a central player in these systemic processes, was downregulated consistently in older hosts. Our findings directly supported the conclusion of a strong host age dependence in determining the host tumor control dynamic. Furthermore, our results offer initial mechanism-based insights into how aging modulates tumor progression in ways that may be actionable for therapy or prevention. Cancer Res; 75(6); 1134–43. ©2015 AACR.

Genetic mouse studies suggest that the NF-κB pathway regulator NEMO (also known as IKKγ) controls chronic inflammation and carcinogenesis in the liver. However, the molecular mechanisms explaining the function of NEMO are not well defined. Here, we report that overexpression of the cell-cycle regulator p21 is a critical feature of liver inflammation and carcinogenesis caused by the loss of NEMO. NEMOΔhepa mice develop chronic hepatitis characterized by increased hepatocyte apoptosis and proliferation that causes the development of fibrosis and hepatocellular carcinoma (HCC), similar to the situation in human liver disease. Having identified p21 overexpression in this model, we evaluated its role in disease progression and LPS-mediated liver injury in double mutant NEMOΔhepa/p21−/− mice. Eight-week-old NEMOΔhepa/p21−/− animals displayed accelerated liver damage that was not associated with alterations in cell-cycle progression or the inflammatory response. However, livers from NEMOΔhepa/p21−/− mice displayed more severe DNA damage that was further characterized by LPS administration correlating with higher lethality of the animals. This phenotype was attenuated by genetic ablation of the TNF receptor TNF-R1 in NEMOΔhepa/p21−/− mice, demonstrating that DNA damage is induced via TNF. One-year-old NEMOΔhepa/p21−/− mice displayed greater numbers of HCC and severe cholestasis compared with NEMOΔhepa animals. Therefore, p21 overexpression in NEMOΔhepa animals protects against DNA damage, acceleration of hepatocarcinogenesis, and cholestasis. Taken together, our findings illustrate how loss of NEMO promotes chronic liver inflammation and carcinogenesis, and they identify a novel protective role for p21 against the generation of DNA damage. Cancer Res; 75(6); 1144–55. ©2015 AACR.