• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources



Carcinogenesis - RSS feed of current issue

In the last three decades since the discovery of p53, it has become increasingly apparent that p53 plays a very important role in tumor suppression. Previously, it was thought that the tumor suppressive functions lied solely in the canonical p53-mediated apoptosis, cell cycle arrest and senescence. However, more recent research has shown that anti-oncogenic activity of p53 can still occur in the absence of these downstream functions. These results suggest that more non-canonical roles of p53 may have a much larger impact on other p53-regulated programs then initially anticipated. Recently, the non-canonical activities of p53 such as cell metabolism, autophagy and necrosis have been the subject of intense study. p53 affects many aspects of cellular metabolism including catabolism, anabolism and reactive oxygen species levels. p53 has a dual role in autophagy regulation. Initiation of autophagy occurs through direct transcription of pro-autophagy genes and inhibition transpires through a transcription-independent mechanism. The role of p53 in these cellular processes is quite complex and evidence suggests that p53 can play both a pro- and anti-oncogenic role in these non-conical pathways. Despite of more than 60 000 publications on p53 in the literature, the mechanisms for p53-mediated tumor suppression apparently needs to be further elucidated.

Despite decades of search for anticancer drugs targeting solid tumors, this group of diseases remains largely incurable, especially if in advanced, metastatic stage. In this review, we draw comparison between reprogramming and carcinogenesis, as well as between stem cells (SCs) and cancer stem cells (CSCs), focusing on changing garniture of adhesion molecules. Furthermore, we elaborate on the role of adhesion molecules in the regulation of (cancer) SCs division (symmetric or asymmetric), and in evolving interactions between CSCs and extracellular matrix. Among other aspects, we analyze the role and changes of expression of key adhesion molecules as cancer progresses and metastases develop. Here, the role of cadherins, integrins, as well as selected transcription factors like Twist and Snail is highlighted, not only in the regulation of epithelial-to-mesenchymal transition but also in the avoidance of anoikis. Finally, we briefly discuss recent developments and new strategies targeting CSCs, which focus on adhesion molecules or targeting tumor vasculature.

Krüppel-like factor 17 (KLF17), a member of the KLF transcription factor family, has been shown to inhibit the epithelial–mesenchymal transition (EMT) and tumor growth. However, the expression, the cellular function and the mechanism of KLF17 in endometrioid endometrial cancer (EEC; a dominant type of endometrial cancer) remain elusive. Here, we report that among the KLF family members, KLF17 was consistently upregulated in EEC cell lines compared with immortalized endometrial epithelial cells. Overexpression of KLF17 in EEC cell lines induced EMT and promoted cell invasion and drug resistance, resulting in increased expression of TWIST1. In contrast, KLF17 suppression reversed EMT, diminished cell invasion, restored drug sensitivity and suppressed TWIST1 expression. Luciferase assays, site-directed mutagenesis and transcription factor DNA-binding analysis demonstrated that KLF17 transactivates TWIST1 expression by directly binding to the TWIST1 promoter. Knockdown of TWIST1 prevented KLF17-induced EMT. Consistent with these results, both KLF17 and TWIST1 levels were found to be elevated in EECs compared with normal tissues. KLF17 expression positively correlated with tumor grade but inversely correlated with estrogen and progesterone receptor expression. Thus, KLF17 may have an oncogenic role during EEC progression via initiating EMT through the regulation of TWIST1.

Hepatocellular carcinoma (HCC) is one of the most common fatal cancers worldwide. Other than the sorafenib treatment, no effective systemic therapy has been available thus far. Most targets in molecularly targeted therapy for cancer are receptor tyrosine kinases (RTKs). Therefore, identifying activated RTKs in HCC is critical for developing new molecularly targeted therapies. Using a phospho-RTK array, we found that Axl is one of the most frequently activated RTKs in liver cancer cell lines. The knockdown of Axl by RNA interference significantly reduced cell migration and invasion in the HCC cell lines HA22T and Mahlavu. Stimulation of HCC cell lines by Axl ligand growth arrest-specific 6 (Gas6) enhanced cell migration and invasion. The Gas6/Axl pathway enhanced the expression of the epithelial–mesenchymal transition-inducing transcription factor Slug, which is essential for the invasion-promoting activity of Axl. Treating HCC cells with the Axl inhibitor bosutinib suppressed Slug expression and decreased the invasiveness of HCC cell lines. These findings indicate that Gas6/Axl regulates tumor invasion through the transcriptional activation of Slug.

BRAF is an important gene in colorectal cancers (CRCs) that is associated with molecular characterization and resistance to targeted therapy. Although microRNAs (miRNAs) are useful biomarkers of various cancers, the association between miRNA and BRAF in CRCs is undefined. Therefore, this study was conducted to identify a relationship between specific miRNA molecules and BRAF mutation in CRCs and serrated lesions. miRNA array was used for the measurement of 760 miRNAs in 29 CRCs. To assess the identified miRNAs, quantitative reverse transcription–PCR was performed on 721 CRCs, 381 serrated lesions and 251 non-serrated adenomas. Moreover, proliferation and invasion assays were conducted using cell lines. miRNA array analysis revealed that microRNA-31 (miR-31)-5p was the most up-regulated miRNA in CRCs with mutated BRAF (V600E) compared with CRCs possessing wild-type BRAF (including cases with KRAS mutation). High miR-31 expression was associated with BRAF and KRAS mutations and proximal location (P < 0.0001). High miR-31 expression was related to cancer-specific mortality [multivariate hazard ratio = 2.06, 95% confidence interval: 1.36–3.09, P = 0.0008]. Functional analysis demonstrated that miR-31 inhibitor decreased cell invasion and proliferation. With regard to serrated lesions, high miR-31 expression was less frequently detected in hyperplastic polyps compared with other serrated lesions. In conclusion, associations were identified between miR-31, BRAF and prognosis in CRC. Transfection of miR-31 inhibitor had an antitumour effect. Thus, miR-31 may be a promising diagnostic biomarker and therapeutic target in colon cancers. Moreover, high miR-31 expression in serrated lesions suggested that miR-31 may be a key molecule in serrated pathway.

WNT5A has been identified as an important ligand in the malignant progression of a number of tumours. Although WNT5A signalling is often altered in cancer, the ligand’s role as either a tumour suppressor or oncogene varies between tumour types and is a contemporary issue for investigators of β-catenin-independent WNT signalling in oncology. Here, we report that one of the initial effects of active WNT5A signalling in malignant melanoma cells is an alteration in cellular energy metabolism and specifically an increase in aerobic glycolysis. This was found to be at least in part due to an increase in active Akt signalling and lactate dehydrogenase (LDH) activity. The clinical relevance of these findings was strengthened by a strong correlation (P < 0.001) between the expression of WNT5A and LDH isoform V in a cohort of melanocytic neoplasms. We also found effects of WNT5A on energy metabolism in breast cancer cells, but rather than promoting aerobic glycolysis as it does in melanoma, WNT5A signalling increased oxidative phosphorylation rates in breast cancer cells. These findings support a new role for WNT5A in the metabolic reprogramming of cancer cells that is a context- dependent event.

Prolactin (PRL) is a secretory cytokine produced by various tissues. Binding to the cognate PRL receptor (PRLR), it activates intracellular signaling via janus kinase (JAK), extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription (STAT) proteins. PRL regulates diverse activities under normal and abnormal conditions, including malignancies. Previous clinical data suggest serum PRL levels are elevated in colorectal cancer (CRC) patients. In this study, we first determined the expression of PRL and PRLR in colon cancer tissue and cell lines. Higher levels of PRLR expression were observed in the cancer cells and cell lines compared with normal colonic epithelial cells. Incubation of colon cancer cells with PRL-induced JAK2, STAT3 and ERK1/2 phosphorylation and increased expression of Jagged 1, which is a Notch-1 receptor ligand. Notch signaling regulates CRC stem cell population. We observed increased accumulation of the cleaved/active form of Notch-1 receptor (Notch intracellular domain) and increased expression of Notch responsive genes HEY1, HES1 and stem cell marker genes DCLK1, LGR5, ALDH1 and CD44. Finally, inhibiting PRL induced JAK2-STAT3 and JAK2-ERK1/2 using AG490 and PD98059, respectively, leads to complete abrogation of Notch signaling, suggesting a role for this pathway in regulating CRC stem cells. Together, our results demonstrate that cytokine signaling induced by PRL is active in colorectal cancers and may provide a novel target for therapeutic intervention.

Germline TP53 mutations predispose to multiple cancers defining Li-Fraumeni/Li-Fraumeni-like syndrome (LFS/LFL), a disease with large individual disparities in cancer profiles and age of onset. G-quadruplexes (G4s) are secondary structural motifs occurring in guanine tracks, with regulatory effects on DNA and RNA. We analyzed 85 polymorphisms within or near five predicted G4s in TP53 in search of modifiers of penetrance of LFS/LFL in Brazilian cancer families with (n = 35) or without (n = 110) TP53 mutations. Statistical analyses stratified on family structure showed that cancer tended to occur ~15 years later in mutation carriers who also carried the variant alleles of two polymorphisms within predicted G4-forming regions, rs17878362 (TP53 PIN3, 16 bp duplication in intron 3; P = 0.082) and rs17880560 (6 bp duplication in 3' flanking region; P = 0.067). Haplotype analysis showed that this inverse association was driven by the polymorphic status of the remaining wild-type (WT) haplotype in mutation carriers: in carriers with a WT haplotype containing at least one variant allele of rs17878362 or rs17880560, cancer occurred ~15 years later than in carriers with other WT haplotypes (P = 0.019). No effect on age of cancer onset was observed in subjects without a TP53 mutation. The G4 in intron 3 has been shown to regulate alternative p53 messenger RNA splicing, whereas the biological roles of predicted G4s in the 3' flanking region remain to be elucidated. In conclusion, this study demonstrates that G4 polymorphisms in haplotypes of the WT TP53 allele have an impact on LFS/LFL penetrance in germline TP53 mutation carriers.

Results of previous serologic studies on the association of human papillomavirus (HPV) with esophageal squamous cell carcinoma (ESCC) have been inconsistent. From 2007 to 2010, the authors collected blood samples and relevant demographic data from 1435 patients with ESCC and 2071 age- and sex-matched normal controls from Anyang, China. HPV-16, 18 and 57 E7 antibodies were evaluated with the glutathione-S-transferase capture ELISA. The proportions of subjects who were positive for antibodies against these three HPV antigens in the case group were all significantly higher than those in the control group. In multivariate analysis, the presence of HPV-16 E7 antibody was associated with an increased risk of ESCC [odds ratio (OR) = 3.6, 95% confidence interval (CI): 2.5–5.0], whereas the presence of HPV-18 (OR = 1.1, 95% CI: 0.7–1.7) and HPV-57 (OR = 1.3, 95% CI: 0.9–1.9) antibodies were not significant after adjustment for HPV-16. In multiple cutoff value analysis, the lowest OR for HPV-16 was obtained with the standard cut point mean + 3 SD. This study provides serological evidence in support of HPV-16 infection playing a role in the occurrence of ESCC in a high-incidence area of China.

An association between obesity and development of clear cell renal cell carcinoma (ccRCC) has been established in the literature; however, there are limited data regarding the molecular mechanisms that underlie this association. Therefore, we used a multistage design to identify and validate genes that are associated with obesity-related ccRCC. We conducted a microarray study and compared gene expression between obese and non-obese subjects in ccRCC tumors and patient-matched normal kidney tissues. Analyses were stratified by smoking status and subsequently performed on the combined cohort. The primary objective was to identify genes where the fold change of ccRCC tumor expression between obese and non-obese subjects was different than the fold change in the patient-matched normal kidney tissue. Thus, we utilized a mixed model and evaluated the tissue type-by-obesity status interaction term. Targeted validation was performed using reverse transcription–polymerase chain reaction (RT–PCR) on an independent cohort. ENRAGE was identified in the microarray study and subsequently validated using RT–PCR to have a statistically significant tissue type-by-obesity status interaction. Specifically, although ENRAGE is similarly expressed across obese and non-obese subjects in normal tissue, it is upregulated in the patient-matched ccRCC tumor tissue. Additionally, ENRAGE is upregulated in tumors that are wild-type for the von Hippel Lindau gene and in tumors for subjects with poorer overall survival. In summary, we provide evidence that overexpression of ENRAGE in ccRCC tumor tissue is an obesity-associated somatic alteration. Upregulation of ENRAGE could lead to local, autocrine stimulation of the RAGE receptor and thus support cancer progression.

Increasing doses of Polyphenon E®, a standardized green tea extract, were given to PNT1a and PC3 prostate epithelial cells mimicking initial and advanced stages of prostate cancer (PCa), respectively. Cell death occurred in both cell lines, with PNT1a being more sensitive [half-maximal inhibitory concentration (IC50) = 35 μg/ml] than PC3 (IC50 = 145 μg/ml) to Polyphenon E®. Cell cycle arrest occurred at G0/G1 checkpoint for PNT1a, and G2/M for PC3 cells. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) occurred in both cell lines, with each exhibiting different timing in response to Polyphenon E®. Autophagy was transiently activated in PNT1a cells within 12 h after treatment as a survival response to overcome ERS; then activation of caspases and cleavage of poly (ADP ribose) polymerase 1 occurred, committing cells to anoikis death. Polyphenon E® induced severe ERS in PC3 cells, causing a dramatic enlargement of the ER; persistent activation of UPR produced strong upregulation of GADD153/CHOP, a key protein of ERS-mediated cell death. Thereafter, GADD153/CHOP activated Puma, a BH3-only protein, committing cells to necroptosis, a programmed caspase-independent mechanism of cell death. Our results provide a foundation for the identification of novel targets and strategies aimed at sensitizing apoptosis-resistant cells to alternative death pathways.

Reciprocal growth factor exchanges between endothelial and malignant cells within the hypoxic microenvironment determine tumor progression. However, the nature of these exchanges has not yet been fully explored. We studied the mutual regulation between endothelial cells (EC), melanoma cells and hypoxia that dictate tumor aggressiveness and angiogenic activity. Here, we investigated the presence of bidirectional autocrine/paracrine endothelin (ET)-1/ET receptor (ETBR) signaling in melanoma cells, blood and lymphatic EC. In all these cells, hypoxia enhanced ET-1 expression, which in turn induced vascular endothelial growth factor (VEGF)-A and VEGF-C secretion, through the hypoxia-inducible growth factor (HIF)-1α and HIF-2α. Autocrine/paracrine exchanges of ET-1, VEGF-A and VEGF-C promoted tumor aggressiveness and morphological changes in blood and lymphatic EC. Furthermore, conditioned media from EC enhanced melanoma cell migration and vessel-like channel formation. This regulation was inhibited by ETBR blockade, by using the selective ETBR antagonist, or ETBR small interfering RNA (siRNA), and by VEGFR-2/-3 antibodies, indicating that ET-1, VEGF-A/VEGF-C, produced by melanoma cells or EC mediated inter-regulation between these cells. Interestingly, HIF-1α/HIF-2α siRNA, impaired this reciprocal regulation, demonstrating the key role of these transcriptional factors in signaling exchanges. In melanoma xenografts, the ETBR antagonist reduced tumor growth and the number of blood and lymphatic vessels. These results reveal an interplay between melanoma cells and EC mediated by ET-1 and VEGF-A/-C and coordinated by the hypoxic microenvironment through HIF-1α/2α transcriptional programs. Thus, targeting ETBR may improve melanoma treatment for tumor and EC, by inhibiting autocrine/paracrine signaling that sustains melanoma progression.

Like normal colorectal epithelium, colorectal carcinomas (CRCs) are organized hierarchically and include populations of cells with stem-like properties. Leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) is associated with these stem cells in normal colorectal epithelium; however, the precise function of LGR5 in CRC remains largely unknown. Here, we analyzed the functional and molecular consequences of short hairpin RNA-mediated silencing of LGR5 in CRC cell lines SW480 and HT-29. Additionally, we exposed Lgr5-EGFP-IRES-CreERT2 mice to azoxymethane/dextrane sodium sulfate (AOM/DSS), which induces inflammation-driven colon tumors. Tumors were then flow-sorted into fractions of epithelial cells that expressed high or low levels of Lgr5 and were molecularly characterized using gene expression profiling and array comparative genomic hybridization. Silencing of LGR5 in SW480 CRC cells resulted in a depletion of spheres but did not affect adherently growing cells. Spheres expressed higher levels of several stem cell-associated genes than adherent cells, including LGR5. Silencing of LGR5 reduced proliferation, migration and colony formation in vitro and tumorigenicity in vivo. In accordance with these results, NOTCH signaling was downregulated upon LGR5 silencing. In AOM/DSS-induced colon tumors, Lgr5 high cells showed higher levels of several stem cell-associated genes and higher Wnt signaling than Lgr5 low tumor cells and Lgr5 high normal colon cells. Array comparative genomic hybridization revealed no genomic imbalances in either tumor cell fraction. Our data elucidate mechanisms that define the role of LGR5 as a marker for stem-like cells in CRC.

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high rate of metastasis. Recent studies have indicated that Notch and janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathways are both important for the initiation and progression of PDAC. The purpose of this study was to determine the outcome of targeting these two tumor signaling pathways simultaneously both in vitro and in vivo. We assessed the combinational effects of the -secretase inhibitor IX (GSI IX) and JAK2 inhibitor (AG-490) on growth and epithelial plasticity of human pancreatic cancer cell lines, and in a genetically engineered mouse model (Pdx1-Cre, LSL-KrasG12D, p53lox/+) of PDAC. Dual treatment with GSI IX and AG-490 significantly impaired cell proliferation, migration, invasion, soft agar growth and apoptosis when compared with monotherapies. Most importantly, combinational treatment significantly attenuates tumor progression in vivo and suppresses conversion from acinar-ductal-metaplasia to PDAC. Our results suggest that targeting Notch and JAK2/STAT3 signaling pathways simultaneously is superior to single inhibitions, supporting combined treatment by GSI IX and AG-490 as a potential therapeutic approach for PDAC. However, the study design limits the direct transfer into the clinic and the impact of dual treatment in patients with PDAC remains still to be determined.

The chromatin remodeling gene AT-rich interactive domain-containing protein 1A (ARID1A) encodes the protein BAF250a, a subunit of human SWI/SNF-related complexes. Recent studies have identified ARID1A as a tumor suppressor. Here, we show that ARID1A expression is reduced in gastric cancer (GC) tissues, which are significantly associated with local lymph node metastasis, tumor infiltration and poor patient prognosis. ARID1A silencing enforces the migration and invasion of GC cells, whereas ectopic expression of ARID1A inhibits migration. The adhesive protein E-cadherin is remarkably downregulated in response to ARID1A silencing, but it is upregulated by ARID1A overexpression. E-cadherin overexpression significantly inhibits GC cell migration and invasion, whereas CDH1 (coded E-cadherin) silencing promotes migration. Restored expression of CDH1 in ARID1A-silenced cell lines restores the inhibition of cell migration. Luciferase reporter assays and chromatin immunoprecipitation indicate that the ARID1A-associated SWI/SNF complex binds to the CDH1 promoter and modulates CDH1 transcription. ARID1A knockdown induces evident morphological changes of GC cells with increased expression of mesenchymal markers, indicating an epithelial–mesenchymal transition. ARID1A silencing does not alter the level of β-catenin but induces a subcellular redistribution of β-catenin from the plasma membrane to the cytoplasm and nucleus. Immunohistochemical studies demonstrate that reduced expression of E-cadherin is associated with local lymph node metastasis, tumor infiltration and poor clinical prognosis. ARID1A and E-cadherin expression show a strong correlation in 75.4% of the analyzed GC tissues. They are synergistically downregulated in 23.5% of analyzed GC tissues. In conclusion, ARID1A targets E-cadherin during the modulation of GC cell migration and invasion.

EHD3 [Eps15 homology (EH) domain-containing protein 3] is a protein that resides in tubular and vesicular membrane structures and participates in endocytic recycling, although all its functions are unknown. Since Ehd3 is most abundantly expressed in brain tissues, we examined its role in brain cancer progression. Using immunohistochemistry, we report loss of EHD3 expression in gliomas, including low-grade astrocytomas, suggesting that this is an early event in gliomagenesis. EHD3 expression is also very low in most of glioma cell lines tested. In two cell lines, a bisulfite sequencing method identifies promoter hypermethylation as a mechanism of Ehd3 silencing, and its expression was restored by the demethylating agent 5-Azacytidine. Doxycycline-inducible restoration of EHD3 expression to glioma cells decreases their growth and invasiveness and induces cell cycle arrest and apoptosis. Furthermore, shRNA-mediated Ehd3 silencing increases cell growth. Using a xenograft model, we demonstrate Ehd3 growth inhibitory functions in glioma cells in vivo. We suggest that Ehd3 functions as a tumor suppressor gene and loss of its expression is a very common event in gliomas. This is the first study to highlight the importance of a member of the C-terminal EHD proteins in cancer and to link their functions to the cell cycle and apoptosis.

MicroRNAs (miRNAs) have emerged as critical epigenetic regulators involved in cancer progression. miR-320a has been identified to be a novel tumour suppressive miRNA in colorectal cancer (CRC). However, the detailed molecular mechanisms are not fully understood. Here, we reported that miR-320a inversely associated with CRC aggressiveness in both cell lines and clinical specimens. Functional studies demonstrated that miR-320a significantly decreased the capability of cell migration/invasion and induced G0/G1 growth arrest in vitro and in vivo. Furthermore, Rac1 was identified as one of the direct downstream targets of miR-320a and miR-320a specifically binds to the conserved 8-mer at position 1140–1147 of Rac1 3'-untranslated region to regulate Rac1 protein expression. Over-expression of miR-320a in SW620 cells inhibited Rac1 expression, whereas reduction of miR-320a by anti-miR-320a in SW480 cells enhanced Rac1 expression. Re-expression of Rac1 in the SW620/miR-320a cells restored the cell migration/invasion inhibited by miR-320a, whereas knockdown of Rac1 in the SW480/anti-miR-320a cells repressed these cellular functions elevated by anti-miR-320a. Conclusively, our results demonstrate that miR-320a functions as a tumour-suppressive miRNA through targeting Rac1 in CRC.

Secretory leukocyte protease inhibitor (SLPI), 11.7 kDa serine protease inhibitor, is produced primarily in the respiratory tract, but it is often elevated in lung, head/neck and ovarian cancers. SLPI expression in relation to cancer progression, metastasis and invasion has been studied extensively in non-small cell lung cancer. However, the role of SLPI during the early stages of carcinogenesis remains unknown. We hypothesized that SLPI is required from the initiation and promotion to the progression of lung carcinogenesis. A skin allograft model using SLPI-knockout (SLPI-KO) mice and short hairpin RNA-treated cells was used to demonstrate that SLPI expression in tumor cells is crucial for tumor formation. Moreover, lung tumorigenesis induced by urethane, a chemical lung carcinogen, was significantly suppressed in SLPI-KO mice in association with decreased nuclear factor-kappaB (NF-B) activity. SLPI deficiency also resulted in decreased cell numbers and decreased production of inflammatory cytokines in bronchoalveolar lavage fluids. The suppression of NF-B activation in SLPI-KO mice was associated with lower expression of NF-B-related survival genes and DNA repair genes. Our findings demonstrate that SLPI plays an important role from the initial stages of lung carcinogenesis to the progression of lung cancer in an NF-B-dependent manner.

Celastrol binds CIP2A and enhances CIP2A–CHIP interaction, leading to ubiquitination/degradation of CIP2A and inhibition of lung cancer cells in vitro and in vivo. Celastrol potentiates cisplatin’s efficacy by suppressing the CIP2A–Akt pathway, and therefore CIP2A inhibitors may represent novel therapeutics for cancer.

Hepatocellular carcinoma (HCC) is the fifth most lethal malignancy worldwide with no curative therapies. To discover potentially novel therapeutic targets for HCC, we previously studied the gene expression profiles of HCC patients and identified that significant upregulation of N-Myc downstream regulated gene 1 (NDRG1) is associated with more aggressive phenotypes and poorer overall survival of HCC patients. In this study, we further used a loss-of-function approach (RNA interference) to understand the role of NDRG1 in hepatocarcinogenesis. We found that suppression of NDRG1 significantly impaired HCC cell growth through inducing extensive cellular senescence of HCC cells both in vitro and in vivo, accompanied by cell cycle arrest at the G1 phase. The observed antitumor effects of NDRG1 suppression were correlated with activation of major senescence-associated signaling pathways, such as upregulation of tumor suppressors p53, p21 and p16, and decreased phosphorylated Rb. To obtain further insights into the clinical significance of NDRG1-modulated senescence in HCC patients, immunohistochemistry staining of 92 cases of HCC patients was done. We found that high NDRG1 expression (n = 66) is associated with low p21 (n = 82; P < 0.001) and low p16 (n = 86; P < 0.001) levels. In conclusion, this study demonstrated that NDRG1 is a potential therapeutic target for HCC because its suppression triggers senescence of HCC cells through activating glycogen synthase kinase-3β–p53 pathway, thereby inhibiting tumor progression.

FAT10 (HLA-F-adjacent transcript 10) is an ubiquitin-like modifier, which has been implicated in immune response and cancer development. In particular, the hypothesis of FAT10 as a mediator of tumorigenesis stems from its ability to associate with a spindle checkpoint protein Mad2 during mitosis and cause aneuploidy, a hallmark of cancer cells. Furthermore, FAT10 is overexpressed in several carcinomas types, including that of liver and colon. Nevertheless, direct evidence linking FAT10 to cell malignant transformation and progression is lacking. Here, we demonstrate that high FAT10 expression enhanced the proliferative, invasive, migratory and adhesive functions of the transformed cell line, HCT116. These observations were consistently demonstrated in an immortalized, non-tumorigenic liver cell line NeHepLxHT. Importantly, FAT10 can induce malignant transformation as evidenced from the anchorage-independent growth as well as in vivo tumor-forming abilities of FAT10-overexpressing NeHepLxHT cells, whereas in rapidly proliferating HCT116, increased FAT10 further augmented tumor growth. FAT10 was found to activate nuclear factor-B (NFB), which in turn upregulated the chemokine receptors CXCR4 and CXCR7. Importantly, small interfering RNA depletion of CXCR7 and CXCR4 attenuated cell invasion of FAT10-overexpressing cells, indicating that the CXCR4/7 is crucial for the FAT10-dependent malignant phenotypes. Taken together, our data reveal novel functions of FAT10 in malignant transformation and progression, via the NFB-CXCR4/7 pathway.

Methyleugenol—a natural constituent of herbs and spices—is hepatocarcinogenic in rodent models. It can form DNA adducts after side-chain hydroxylation and sulfation. We previously demonstrated that human sulfotransferases (SULTs) 1A1 and 1A2 as well as mouse Sult1a1, expressed in Salmonella target strains, are able to activate 1'-hydroxymethyleugenol (1'-OH-ME) and 3'-hydroxymethylisoeugenol (3'-OH-MIE) to mutagens. Now we investigated the role of these enzymes in the formation of hepatic DNA adducts by methyleugenol in the mouse in vivo. We used FVB/N mice [wild-type (wt)] and genetically modified strains in this background: Sult1a1 knockout (ko), transgenic for human SULT1A1/2 (tg) and the combination of both modifications (ko-tg). Methyleugenol (50mg/kg body mass) formed 23, 735, 3770 and 4500 N 2-(trans-methylisoeugenol-3'-yl)-2'-deoxyguanosine adducts per 108 2'-deoxyribonucleosides (dN) in ko, wt, ko-tg and tg mice, respectively. The corresponding values for an equimolar dose of 1'-OH-ME were 12, 1490, 12 400 and 13 300 per 108 dN. Similar relative levels were observed for the minor adduct, N 6-(trans-methylisoeugenol-3'-yl)-2'-deoxyadenosine. Thus, the adduct formation by both compounds was nearly completely dependent on the presence of SULT1A enzymes, with human SULT1A1/2 producing stronger effects than mouse Sult1a1. Moreover, a dose of 0.05mg/kg methyleugenol (one-fourth of the estimated average daily exposure of humans) was sufficient to form detectable adducts in humanized (ko-tg) mice. Although 3'-OH-MIE was equally mutagenic to 1'-OH-ME in Salmonella strains expressing human SULT1A1 or 1A2, it only formed 0.14% of hepatic adducts in ko-tg mice compared with an equimolar dose of 1'-OH-ME, suggesting an important role of detoxifying pathways for this isomer in vivo.

Gastric cancer (GC) is still one of the most common causes of cancer-related death worldwide, which is mainly attributable to late diagnosis and poor treatment options. Infection with Helicobacter pylori, different environmental factors and genetic alterations are known to influence the risk of developing gastric tumors. However, the molecular mechanisms involved in gastric carcinogenesis are still not fully understood, making it difficult to design targeted therapeutic approaches. Aberrant expression of the specific gastric differentiation marker SOX2 has been observed in stomach cancer. However, the role of SOX2 in gastric tumors has not been well established to date. To elucidate the role of SOX2 in gastric tumorigenesis, SOX2 transcriptional activity was blocked in AZ-521 cells. Interestingly, inhibition of SOX2 reduced cell proliferation and migration, increased apoptosis and induced changes in cell cycle. Blocking of SOX2 also reduced the tumorigenic potential of AZ-521 cells in vivo. In addition, correlation of SOX2 expression and proliferation was observed in a subset of human gastric tumors. Finally, target genes of SOX2 were for the first time identified by RNA microarray in GC cells. Taken together, the results presented here indicate that SOX2 controls several aspects related to GC development and progression by regulating the expression of members of important signaling pathways. These findings could provide new therapeutic options for a subset of GCs exhibiting SOX2 deregulation.

The role for the inhibitors of differentiation (Ids) proteins in melanomagenesis has been poorly explored. In other cell types, Ids have been shown to contribute to cell proliferation, migration and angiogenesis and, along with a number of other genes, are direct downstream targets of the transforming growth factor (TGF)-β pathway. Expression of Smad7, which suppress TGF-β signaling, or synthetic TGF-β inhibitors, was shown to potently suppress melanomagenesis. We found that endogenous Id2, Id3 and Id4 expression was elevated in 1205Lu versus 1205Lu cells constitutively expressing Smad7, indicating Ids may play a role in melanomagenesis. Therefore, the effects of Tet-inducible expression of Id2, Id3 or Id4 along with Smad7 in TGF-β-dependent 1205Lu human melanoma cells were explored in vitro and in vivo. 1205Lu cells formed subcutaneous tumors in athymic mice, whereas cells expressing Smad7 failed to form tumors. However, 1205Lu cells expressing Smad7 along with doxycycline-induced Id2, Id3 or Id4 were able to overcome the potent tumorigenic block mediated by S7, to varying degrees. Conversely, Id small interfering RNA knockdown suppressed anchorage-independent growth of melanoma. Histology of tumors from 1205Lu cells expressing Smad7 + Id4 revealed an average of 31% necrosis, compared with 5.2% in tumors from 1205Lu with vector only. Downstream, Ids suppressed cyclin-dependent kinase inhibitors, and re-upregulated invasion and metastasis-related genes matrix metalloproteinase 2 (MMP2), MMP9, CXCR4 and osteopontin, shown previously to be downregulated in response to Smad7. This study shows that Id2, Id3 and Id4 are each able to overcome TGF-β dependence, and establish a role for Ids as key mediators of TGF-β melanomagenesis.

Transforming growth factor beta 1 (TGFβ1) is a pleiotropic cytokine in the skin that can function both as a tumor promoter and suppressor in chemically induced skin carcinogenesis, but the function in ultraviolet B (UVB) carcinogenesis is not well understood. Treatment of SKH1 hairless mice with the activin-like kinase 5 (ALK5) inhibitor SB431542 to block UVB-induced activation of cutaneous TGFβ1 signaling suppressed skin tumor formation but did not alter tumor size or tumor cell proliferation. Tumors that arose in SB-treated mice after 30 weeks had significantly reduced percentage of IFN+ tumor-infiltrating lymphocytes compared with control mice. SB431542 blocked acute and chronic UVB-induced skin inflammation and T-cell activation in the skin-draining lymph node (SDLN) and skin but did not alter UVB-induced epidermal proliferation. We tested the effect of SB431542 on migration of skin dendritic cell (DC) populations because DCs are critical mediators of T-cell activation and cutaneous inflammation. SB431542 blocked (i) UVB-induced Smad2 phosphorylation in dermal DC (dDC) and (ii) SDLN and ear explant migration of CD103+ CD207+ and CD207 skin DC subsets but did not affect basal or UV-induced migration of Langerhans cells. Mice expressing a dominant-negative TGFβ type II receptor in CD11c+ cells had reduced basal and UVB-induced SDLN migration of CD103+ CD207+ and CD207 DC subsets and a reduced percentage of CD86high dDC following UVB irradiation. Together, these suggest that TGFβ1 signaling has a tumor-promoting role in UVB-induced skin carcinogenesis and this is mediated in part through its role in UVB-induced migration of dDC and cutaneous inflammation.