• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources



Carcinogenesis - RSS feed of current issue

Cancer is characterized by a diversity of genetic and epigenetic alterations occurring in both the germline and somatic (tumor) genomes. Hundreds of germline variants associated with cancer risk have been identified, and large amounts of data identifying mutations in the tumor genome that participate in tumorigenesis have been generated. Increasingly, these two genomes are being explored jointly to better understand how cancer risk alleles contribute to carcinogenesis and whether they influence development of specific tumor types or mutation profiles. To understand how data from germline risk studies and tumor genome profiling is being integrated, we reviewed 160 articles describing research that incorporated data from both genomes, published between January 2009 and December 2012, and summarized the current state of the field. We identified three principle types of research questions being addressed using these data: (i) use of tumor data to determine the putative function of germline risk variants; (ii) identification and analysis of relationships between host genetic background and particular tumor mutations or types; and (iii) use of tumor molecular profiling data to reduce genetic heterogeneity or refine phenotypes for germline association studies. We also found descriptive studies that compared germline and tumor genomic variation in a gene or gene family, and papers describing research methods, data sources, or analytical tools. We identified a large set of tools and data resources that can be used to analyze and integrate data from both genomes. Finally, we discuss opportunities and challenges for cancer research that integrates germline and tumor genomics data.

Embryonal tumors of the central nervous system represent a highly malignant tumor group of medulloblastoma (MB), atypical teratoid/rhabdoid tumor (AT/RT) and primitive neuroectodermal tumor that frequently afflict children. AT/RT is often misdiagnosed as MB/primitive neuroectodermal tumor but with higher recurrence and lower survival rates. Pathogenesis of AT/RT is largely unknown. In this study, we report both the miRNome and transcriptome traits in AT/RT and MB by using small RNA sequencing and gene expression microarray analyses. Our findings demonstrate that the miR-221/222-encoded micro RNAs are abundantly expressed in AT/RT but not in MB, which contribute substantially to the malignancy of embryonal tumors. miR-221/222 targeted SUN2, a newly discovered tumor suppressor, directly to increase cell proliferation and tumor malignancy in vitro and in vivo. Immunohistochemistry against SUN2 in a tissue microarray of 33 AT/RT and 154 MB tumor specimens also detected less SUN2 protein in AT/RT. Collectively, this study uncovers a novel tumor suppressor, SUN2, plays a critical role in miR-221/222-mediated AT/RT malignancy as well as supports miR-221/222 and SUN2 represent new promising targets for more active therapies in AT/RT. In addition, our miRNome and transcriptome data also provide a roadmap for further embryonal tumor research.

MiR-21 has been associated with poor prognosis in colon adenocarcinomas. However, in our preliminary data, the prognostic value of miR-21 levels was observed only in adenomatous polyposis coli (APC)-mutated tumours, not in APC-wild-type tumours. We explored whether β-catenin nuclear translocation was synergistically promoted by miR-21 in APC-mutated cells but not in APC-wild-type cells. We enrolled 165 colorectal tumour to determine APC mutation, miR-21 levels and nuclear β-catenin expression by direct sequencing, real-time PCR and immunohistochemistry. Overall survival and relapse-free survival were analysed by Kaplan–Meier and Cox regression models. The mechanistic action of β-catenin nuclear translocation modulated by miR-21 and its effect on cell invasion were evaluated in a cell model. Positive nuclear β-catenin expression was more commonly occurred in APC-mutated tumours than in APC-wild-type tumours. High miR-21 levels were relatively more common in tumours with positive nuclear β-catenin expression than in those with negative nuclear β-catenin expression. APC-mutated tumours with high miR-21 levels had shorter overall survival and relapse-free survival periods compared with others. However, the prognostic value of miR-21 levels was not observed in APC-wild-type tumours. Phosphorylation of β-catenin at Ser552 via the miR-21-mediated PTEN/AKT axis plays a critical role in β-catenin nuclear translocation in APC-mutated cells but not in APC-wild-type cells. Moreover, nuclear β-catenin expression increased by miR-21 is responsible for the capability of invasiveness. In summary, nuclear translocation of β-catenin increased by miR-21 promotes tumour malignancy and a poor outcome in APC-mutated patients but not in APC-wild-type colorectal cancer.

Flavonoids have been extensively studied and are well documented to have anticancer effects, but it is not entirely known how they impact cellular mechanisms to elicit these effects. In the course of this study, we found that a variety of different flavonoids readily restored Brahma (BRM) in BRM-deficient cancer cell lines. Flavonoids from each of the six different structural groups were effective at inducing BRM expression as well as inhibiting growth in these BRM-deficient cancer cells. By blocking the induction of BRM with shRNA, we found that flavonoid-induced growth inhibition was BRM dependent. We also found that flavonoids can restore BRM functionality by reversing BRM acetylation. In addition, we observed that an array of natural flavonoid-containing products both induced BRM expression as well as deacetylated the BRM protein. We also tested two of the BRM-inducing flavonoids (Rutin and Diosmin) at both a low and a high dose on the development of tumors in an established murine lung cancer model. We found that these flavonoids effectively blocked development of adenomas in the lungs of wild-type mice but not in that of BRMnull mice. These data demonstrate that BRM expression and function are regulated by flavonoids and that functional BRM appears to be a prerequisite for the anticancer effects of flavonoids both in vitro and in vivo.

Cell transformation is clearly linked to epigenetic changes. However, the role of the histone-modifying enzymes in this process is still poorly understood. In this study, we investigated the contribution of the histone acetyltransferase (HAT) enzymes to Ras-mediated transformation. Our results demonstrated that lysine acetyltransferase 5, also known as Tip60, facilitates histone acetylation of bulk chromatin in Ras-transformed cells. As a consequence, global H4 acetylation (H4K8ac and H4K12ac) increases in Ras-transformed cells, rendering a more decompacted chromatin than in parental cells. Furthermore, low levels of CREB-binding protein (CBP) lead to hypoacetylation of retinoblastoma 1 (Rb1) and cyclin-dependent kinase inhibitor 1B (Cdkn1b or p27Kip1) tumour suppressor gene promoters to facilitate Ras-mediated transformation. In agreement with these data, overexpression of Cbp counteracts Ras transforming capability in a HAT-dependent manner. Altogether our results indicate that CBP and Tip60 coordinate histone acetylation at both local and global levels to facilitate Ras-induced transformation.

Gemcitabine resistance remains a significant clinical challenge. Here, we used a novel glucose transporter (Glut) inhibitor, CG-5, as a proof-of-concept compound to investigate the therapeutic utility of targeting the Warburg effect to overcome gemcitabine resistance in pancreatic cancer. The effects of gemcitabine and/or CG-5 on viability, survival, glucose uptake and DNA damage were evaluated in gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cell lines. Mechanistic studies were conducted to determine the molecular basis of gemcitabine resistance and the mechanism of CG-5-induced sensitization to gemcitabine. The effects of CG-5 on gemcitabine sensitivity were investigated in a xenograft tumor model of gemcitabine-resistant pancreatic cancer. In contrast to gemcitabine-sensitive pancreatic cancer cells, the resistant Panc-1 and Panc-1GemR cells responded to gemcitabine by increasing the expression of ribonucleotide reductase M2 catalytic subunit (RRM2) through E2F1-mediated transcriptional activation. Acting as a pan-Glut inhibitor, CG-5 abrogated this gemcitabine-induced upregulation of RRM2 through decreased E2F1 expression, thereby enhancing gemcitabine-induced DNA damage and inhibition of cell survival. This CG-5-induced inhibition of E2F1 expression was mediated by the induction of a previously unreported E2F1-targeted microRNA, miR-520f. The addition of oral CG-5 to gemcitabine therapy caused greater suppression of Panc-1GemR xenograft tumor growth in vivo than either drug alone. Glut inhibition may be an effective strategy to enhance gemcitabine activity for the treatment of pancreatic cancer.

The INhibitor of Growth (ING) proteins are encoded as multiple isoforms in five ING genes (ING1 –5) and act as type II tumor suppressors. They are growth inhibitory when overexpressed and are frequently mislocalized or downregulated in several forms of cancer. ING1 and ING2 are stoichiometric members of histone deacetylase complexes, whereas ING3–5 are stoichiometric components of different histone acetyltransferase complexes. The INGs target these complexes to histone marks, thus acting as epigenetic regulators. ING proteins affect angiogenesis, apoptosis, DNA repair, metastasis and senescence, but how the proteins themselves are regulated is not yet clear. Here, we find a small ubiquitin-like modification (SUMOylation) of the ING1b protein and identify lysine 193 (K193) as the preferred ING1b SUMO acceptor site. We also show that PIAS4 is the E3 SUMO ligase responsible for ING1b SUMOylation on K193. Sequence alignment reveals that the SUMO consensus site on ING1b contains a phosphorylation-dependent SUMOylation motif (PDSM) and our data indicate that the SUMOylation on K193 is enhanced by the S199D phosphomimic mutant. Using an ING1b protein mutated at the major SUMOylation site (ING1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription.

Accumulation of genetic and epigenetic changes alters regulation of a web of interconnected genes including microRNAs (miRNAs), which confer hallmark capabilities and characteristic cancer features. In this study, the miRNA and messenger RNA expression profiles of 126 non-small cell lung cancer specimens were analyzed, with special attention given to the diversity of lung adenocarcinomas. Of those, 76 adenocarcinomas were classified into two major subtypes, developing lung-like and adult lung-like, based on their distinctive miRNA expression profiles resembling those of either developing or adult lungs, respectively. A systems biology-based approach using a Bayesian network and non-parametric regression was employed to estimate the gene regulatory circuitry functioning in patient tumors in order to identify subnetworks enriched for genes with differential expression between the two major subtypes. miR-30d and miR-195, identified as hub genes in such subnetworks, had lower levels of expression in the developing lung-like subtype, whereas introduction of miR-30d or miR-195 into the lung cancer cell lines evoked shifts of messenger RNA expression profiles toward the adult lung-like subtype. Conversely, the influence of miR-30d and miR-195 was significantly different between the developing lung-like and adult lung-like subtypes in our analysis of the patient data set. In addition, RRM2, a child gene of the miR-30d-centered subnetwork, was found to be a direct target of miR-30d. Together, our findings reveal the existence of two miRNA expression profile-defined lung adenocarcinoma subtypes with distinctive clinicopathologic features and also suggest the usefulness of a systems biology-based approach to gain insight into the altered regulatory circuitry involved in cancer development.

Insulin-like growth factor (IGF)-dependent and -independent antitumor activities of insulin-like growth factor binding protein-3 (IGFBP-3) have been proposed in human non-small cell lung cancer (NSCLC) cells. However, the mechanism underlying regulation of IGFBP-3 expression in NSCLC cells is not well understood. In this study, we show that activation of Akt, especially Akt3, plays a major role in the mRNA expression and protein stability of IGFBP-3 and thus antitumor activities of IGFBP-3 in NSCLC cells. When Akt was activated by genomic or pharmacologic approaches, IGFBP-3 transcription and protein stability were decreased. Conversely, suppression of Akt increased IGFBP-3 mRNA levels and protein stability in NSCLC cell lines. Characterization of the effects of constitutively active form of each Akt subtype (HA-Akt-DD) on IGFBP-3 expression in NSCLC cells and a xenograft model indicated that Akt3 plays a major role in the Akt-mediated regulation of IGFBP-3 expression and thus suppression of Akt effectively enhances the antitumor activities of IGFBP-3 in NSCLC cells with Akt3 overactivation. Collectively, these data suggest a novel function of Akt3 as a negative regulator of IGFBP-3, indicating the possible benefit of a combined inhibition of IGFBP-3 and Akt3 for the treatment of patients with NSCLC.

N-α-Acetyltransferase 10 protein (Naa10p, also called arrest-defective 1), the catalytic subunit of N-acetyltransferase A, is a critical regulator of cell death and proliferation. Naa10p is also shown to regulate cancer metastasis by inhibiting cell motility; however, its role in cancer metastasis is not fully understood. In this study, we found that high expression of Naa10p is positively correlated with the survival of patients with breast cancer, whereas negatively correlated with lymph node metastasis. Naa10p inhibits breast cancer cell migration and invasion in vitro and decreases the xenograft growth and metastasis in nude mice. Microarray screening revealed that Naa10p downregulates inhibitors of differentiation 1 (ID1) expression. Naa10p binds to signal transducer and activator of transcription 5a (STAT5a) and decreases STAT5a-stimulated ID1 expression in an acetyltransferase-independent manner. Moreover, Naa10p antagonizes Janus kinase 2-STAT5a signaling by lowering p65-activated interleukin-1β expression. Our results demonstrate a novel mechanism through which Naa10p inhibits the metastasis of breast cancer cells by targeting STAT5a.

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor prognosis and lacks effective targeted therapies. The microRNA-200 (miR-200) family is found to inhibit or promote breast cancer metastasis; however, the underlying mechanism is not well understood. This study was performed to investigate the effect and mechanism of miR-200b on TNBC metastasis and identify targets for developing more efficient treatment for TNBC. We found that miR-200 family expression levels are significantly lower in highly migratory TNBC cells and metastatic TNBC tumors than other types of breast cancer cells and tumors. Ectopically expressing a single member (miR-200b) of the miR-200 family drastically reduces TNBC cell migration and inhibits tumor metastasis in an orthotopic mouse mammary xenograft tumor model. We identified protein kinase Cα (PKCα) as a new direct target of miR-200b and found that PKCα protein levels are inversely correlated with miR-200b levels in 12 kinds of breast cancer cells. Inhibiting PKCα activity or knocking down PKCα levels significantly reduces TNBC cell migration. In contrast, forced expression of PKCα impairs the inhibitory effect of miR-200b on cell migration and tumor metastasis. Further mechanistic studies revealed that PKCα downregulation by miR-200b results in a significant decrease of Rac1 activation in TNBC cells. These results show that loss of miR-200b expression plays a crucial role in TNBC aggressiveness and that miR-200b suppresses TNBC cell migration and tumor metastasis by targeting PKCα. Our findings suggest that miR-200b and PKCα may serve as promising therapeutic targets for metastatic TNBC.

The cell metabolome comprises abundant information that may be predictive of cell functions in response to epigenetic or genetic changes at different stages of cell proliferation and metastasis. An unbiased ultra-performance liquid chromatography–mass spectrometry-based metabolomics study revealed a significantly altered metabolome for human pancreatic carcinoma PANC-1 cells with gain-of-function non-coding microRNA-1291 (miR-1291), which led to a lower migration and invasion capacity as well as suppressed tumorigenesis in a xenograft tumor mouse model. A number of metabolites, including N-methylnicotinamide, involved in nicotinamide metabolism, and l-carnitine, isobutyryl-carnitine and isovaleryl-carnitine, involved in fatty acid metabolism, were elevated in miR-1291-expressing PANC-1. Notably, N-methylnicotinamide was elevated to the greatest extent, and this was associated with a sharp increase in nicotinamide N-methyltransferase (NNMT) mRNA level in miR-1291-expressing PANC-1 cells. In addition, expression of NNMT mRNA was inversely correlated with pancreatic tumor size in the xenograft mouse model. These results indicate that miR-1291-altered PANC-1 cell function is associated with the increase in N-methylnicotinamide level and NNMT expression, and in turn NNMT may be indicative of the extent of pancreatic carcinogenesis.

Synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) and homologous recombination (HR) repair pathways have been exploited for the development of novel mono- and combination cancer therapies. The tumor suppressor p53 was demonstrated to exhibit indirect and direct regulatory activities in DNA repair, particularly in DNA double-strand break (DSB)-induced and replication-associated HR. In this study, we tested a potential influence of the p53 status on the response to PARP inhibition, which is known to cause replication stress. Silencing endogenous or inducibly expressing p53 we found a protective effect of p53 on PARP inhibitor (PARPi)-mediated cytotoxicities. This effect was specific for wild-type versus mutant p53 and observed in cancer but not in non-transformed cell lines. Enhanced cytotoxicities after treatment with the p53-inhibitory drug Pifithrinα further supported p53-mediated resistance to PARP inhibition. Surprisingly, we equally observed increased PARPi sensitivity in the presence of the p53-activating compound Nutlin-3. As a common denominator, both drug responses correlated with decreased HR activities: Pifithrinα downregulated spontaneous HR resulting in damage accumulation. Nutlin-3 induced a decrease of DSB-induced HR, which was accompanied by a severe drop in RAD51 protein levels. Thus, we revealed a novel link between PARPi responsiveness and p53-controlled HR activities. These data expand the concept of cell and stress type-dependent healer and killer functions of wild-type p53 in response to cancer therapeutic treatment. Our findings have implications for the individualized design of cancer therapies using PARPi and the potentially combined use of p53-modulatory drugs.

Stem cell factor (SCF), a ligand of c-kit, is a hematopoietic growth factor. Uncontrolled activity of SCF/c-kit signaling pathway contributes to the formation of a variety of human malignancies. In this study, we determined whether SCF expression could risk-stratify patients with hepatocellular carcinoma (HCC) after curative resection. HCC tissues from 160 patients were collected during curative resection and stained with SCF and CD34, a marker for microvessel density (MVD), using immunohistochemistry. Two statistical analyses were performed: an independent continuous and a multivariate categorical analysis, with test/validation set-defined cut points, and Kaplan–Meier estimated outcome measures of overall survival (OS) and relapse-free survival (RFS). We found that higher levels of SCF confer worse OS (continuous P = 0.014; and categorical P = 0.009), and RFS (continuous P = 0.002; categorical P = 0.003) of patients with HCC. SCF varies independently from MVD-CD34, tumor node metastasis, histologic grade, age and gender, and retains prognostic significance when analysed as a categorical variable in a multivariate analysis . We confirmed that MVD-CD34 is also an independent prognostic marker for patients with HCC. The levels of SCF and CD34 showed a positive and significant correlation (P < 0.0001) and double low expression confers superior OS (median = 48 months) and RFS (median = 24 months), whereas double high expression confers shortest RFS (median = 10.5 months) compared with single measurements. The prognostic values of SCF and CD34 were independently determined in this study and we propose that both of them are independent prognostic markers for HCC.

We recently demonstrated that both murine and human carcinomas grow significantly slower in mice on low carbohydrate (CHO), high protein diets than on isocaloric Western diets and that a further reduction in tumor growth rates occur when the low CHO diets are combined with the cyclooxygenase-2 inhibitor, celecoxib. Following upon these studies, we asked herein what effect low CHO, high protein diets, with or without celecoxib, might have on tumor metastasis. In the highly metastatic 4T1 mouse mammary tumor model, a 15% CHO, high protein diet supplemented with celecoxib (1 g/kg chow) markedly reduced lung metastases. Moreover, in longer-term studies using male Transgenic Adenocarcinoma of the Mouse Prostate mice, which are predisposed to metastatic prostate cancer, the 15% CHO diet, with and without celecoxib (0.3 g/kg chow), gave the lowest incidence of metastases, but a more moderate 25% CHO diet containing celecoxib led to the best survival. Metabolic studies with 4T1 tumors suggested that the low CHO, high protein diets may be forcing tumors to become dependent on amino acid catabolism for survival/growth. Taken together, our results suggest that a combination of a low CHO, high protein diet with celecoxib substantially reduces metastasis.

Lapatinib, a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), is prescribed for the treatment of patients with metastatic breast cancer overexpressing HER-2. Involvement of this drug in pulmonary carcinogenesis has been poorly investigated. We used murine models suitable to evaluate cigarette smoke-related molecular and histopathological alterations. A total of 481 Swiss H mice were used. The mice were exposed to mainstream cigarette smoke (MCS) during the first four months of life. After 10 weeks, MCS caused an elevation of bulky DNA adducts, oxidative DNA damage and an extensive downregulation of microRNAs in lung. After four months, an increase in micronucleus frequency was observed in peripheral blood erythrocytes. After 7.5 months, histopathological alterations were detected in the lung, also including benign tumors and malignant tumors, and in the urinary tract. A subchronic toxicity study assessed the non-toxic doses of lapatinib, administered daily with the diet after weaning. After 10 weeks, lapatinib significantly attenuated the MCS-related nucleotide changes and upregulated several low-intensity microRNAs in lung. The drug poorly affected the MCS systemic genotoxicity and had modest protective effects on MCS-induced preneoplastic lesions in lung and kidney, when administered under conditions that temporarily mimicked interventions either in current smokers or ex-smokers. On the other hand, it caused some toxicity to the liver. Thus, on the whole, lapatinib appears to have a low impact in the smoke-related lung carcinogenesis models used, especially in terms of tumorigenic response.

We investigated the effect of dietary supplementation with selenium on spontaneous metastasis of Lewis lung carcinoma in mice fed a high-fat diet. Mice were fed a low-fat diet or that diet modified with 45% of calories from corn oil and supplemented with 0 or 2.5mg selenium/4029 kcal as methylseleninic acid. After 6 weeks, mice were each injected 2.5 x 105 Lewis lung carcinoma cells subcutaneously. The resulting primary tumor was removed surgically 10 days later; the experiment was terminated after an additional 10 days. High-fat feeding increased pulmonary metastases by 17% compared to the low-fat diet (P < 0.01). Selenium supplementation reduced the metastases by 11% compared to nonsupplemented controls (P < 0.05); the reduction was less for animals fed the high-fat diet (5%) than for those fed the low-fat diet (18%). Supplemental Se lowered plasma concentrations of proteases (urokinase plasminogen activator, P < 0.01; matrix metalloproteinase-9, P < 0.05) and angiogenic factors (vascular endothelial growth factor, P < 0.01; tissue inhibitor of metalloproteinase-1, P < 0.01) compared to nonsupplemented controls. High-fat feeding increased plasma concentrations of adipokines plasminogen activator inhibitor-1, monocyte chemotactic protein-1, tumor necrosis factor-α, and leptin regardless of the level of dietary selenium; supplemental selenium lowered plasma concentrations of plasminogen activator inhibitor-1 (P ≤ 0.05) and monocyte chemotactic protein-1 (P ≤ 0.05) in low-fat fed mice but not in high-fat fed mice. These results indicate that consumption of a high-fat diet abrogated the antimetastatic effects of selenium by increasing the expression of adipose-derived inflammatory cytokines.

Colorectal cancer (CRC) is one of the major causes of cancer death worldwide. The development of novel anti-CRC agents able to overcome drug resistance and/or off-target toxicity is of pivotal importance. The mammalian target of rapamycin (mTOR) plays a critical role in CRC, regulating protein translation and controlling cell growth, proliferation, metabolism and survival. The aim of this study was to explore the effect of a combination of three natural compounds, eicosapentaenoic acid-free fatty acid (EPA-FFA), epigallocatechin-3-gallate (EGCG) and proanthocyanidins (grape seed [GS] extract) at low cytotoxic concentrations on CRC cells and test their activity on mTOR and translational regulation. The CRC cell lines HCT116 and SW480 were treated for 24h with combinations of EPA-FFA (0–150 µM), EGCG (0–175 µM) and GS extract (0–15 µM) to evaluate the effect on cell viability. The low cytotoxic combination of EPA-FFA 150 µM, EGCG 175 µM and GS extract 15 µM completely inhibited the mTOR signaling in HCT116 and SW480 cells, reaching an effect stronger than or comparable to that of the mTOR inhibitor Rapamycin in HCT116 or SW480 cells, respectively. Moreover, the treatment led to changes of protein translation of ribosomal proteins, c-Myc and cyclin D1. In addition, we found a reduction of clonal capability in both cell lines, with block of cell cycle in G0G1 and induction of apoptosis. Our data suggest that the low cytotoxic combination of EPA-FFA, EGCG and GS extract, tested for the first time here, inhibits mTOR signaling and thus could be considered for CRC treatment.

Prostate cancer (PCa) is the second cause of cancer deaths in men in the USA. When the cancer recurs, early stages can be controlled with hormone ablation therapy to delay the rate of cancer progression but, over time, the cancer overcomes its hormone dependence, becomes highly aggressive and metastasizes. Clinical trials have shown that pomegranate juice (PJ) inhibits PCa progression. We have previously shown that the PJ components luteolin (L), ellagic acid (E) and punicic acid (P) together inhibit growth of hormone-dependent and -independent PCa cells and inhibit their migration and chemotaxis towards CXCL12, a chemokine that is important in PCa metastasis. On the basis of these findings, we hypothesized that L+E+P inhibit PCa metastasis in vivo. To test this possibility, we used a severe combined immunodeficiency mouse model in which luciferase-expressing human PCa cells were injected subcutaneously near the prostate. Tumor progression was monitored with bioluminescence imaging weekly. We found that L+E+P inhibits PC-3M-luc primary tumor growth, inhibits the CXCL12/CXCR4 axis for metastasis and none of the tumors metastasized. In addition, L+E+P significantly inhibits growth and metastasis of highly invasive Pten –/– ;K-ras G12D prostate tumors. Furthermore, L+E+P inhibits angiogenesis in vivo, prevents human endothelial cell (EC) tube formation in culture and disrupts preformed EC tubes, indicating inhibition of EC adhesion to each other. L+E+P also inhibits the angiogenic factors interleukin-8 and vascular endothelial growth factor as well as their induced signaling pathways in ECs. In conclusion, these results show that L+E+P inhibits PCa progression and metastasis.

Recently, we found upregulation of fibroblast growth factor receptor 4 (FGFR4) in a subset of hepatocellular carcinoma (HCC). Here, we provide mechanistic insight into the role of FGFR4-mediated signalling for the aggressive behaviour of HCC cells. To overexpress FGFR4, hepatoma/hepatocarcinoma cells were transfected with a construct coding for FGFR4. For downmodulation of endogenous FGFR4, we used small interfering RNA or adenoviral infection with dominant-negative FGFR4 constructs being either kinase dead (kdFGFR4) or coding for the autoinhibitory soluble domain (solFGFR4). FGFR4 overexpression in non-tumourigenic hepatocarcinoma cells significantly reduced cell–matrix adhesion, enabled cells to grow anchorage-independently in soft agar, to disintegrate the lymph-/blood–endothelial barrier for intra-/extravasation of tumour cells and to form tumours in SCID mice. Transcriptome analysis revealed altered expression of genes involved in cell–matrix interactions. Conversely, in highly tumourigenic cell lines, kdFGFR4 or solFGFR4 lowered the proportion of cells in S phase of the cell cycle, enhanced the G0/G1 and G2/M-phase proportions, reduced anchorage-independent growth in vitro and attenuated disintegration of the lymph-/blood–endothelium and tumour formation in vivo. These findings were confirmed by altered expression profiles of genes being important for late stages of cell division. Deregulated FGFR4 expression appears to be one of the key drivers of the malignant phenotype of HCC cells. Accordingly, blockade of FGFR4-mediated signalling by soluble dominant-negative constructs, like solFGFR4, may be a feasible and promising therapeutic approach to antagonize aggressive behaviour of hepatoma/hepatocarcinoma cells.

Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography–tandem mass spectrometry quantification of resulting DNA adducts, e.g. N 2-((furan-2-yl)methyl)-2'-deoxyguanosine (N 2-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N 2-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33–73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N 2-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans.

Accumulating evidence has suggested that cancer stem cells (CSCs) are at the root of drug resistance, and recent studies have indicated that caveolin-1, a membrane transporter protein, is involved in the regulation of cancer chemoresistance and stem cell signaling. However, the current understanding of the role of caveolin-1 in breast cancer development remains controversial. Herein, we demonstrate that caveolin-1 expression was upregulated after breast cancer chemotherapy in vitro and in vivo, accompanied by co-overexpression of β-catenin and ATP-binding cassette subfamily G member 2 (ABCG2) signaling. Additionally, breast CSCs were enriched for caveolin-1 expression. Caveolin-1 silencing sensitized breast CSCs by limiting their self-renewal ability but promoting the differentiation process. β-catenin silencing prevented the enhanced chemoresistance of CSCs induced by caveolin-1 overexpression, indicating that β-catenin is an essential molecule responsible for caveolin-1-mediated action. Further mechanistic investigation revealed that caveolin-1 silencing could downregulate the β-catenin/ABCG2 pathway through glycogen synthase kinase 3 beta activation and Akt inhibition, resulting in increased β-catenin phosphorylation and proteasomal degradation. Clinical investigation also revealed a close correlation between caveolin-1 and β-catenin/ABCG2 signaling in breast cancer samples. Notably, caveolin-1 was highly elevated in triple-negative breast cancer, and caveolin-1 silencing significantly impaired the tumorigenicity and chemoresistance of breast CSCs in in vivo models. Overall, our study not only highlights the role of caveolin-1 in mediating the chemoresistance of breast CSCs via β-catenin/ABCG2 regulation but also provides novel approaches for future therapies targeting CSCs.

B-cell precursor acute lymphoblastic leukemia (BCP ALL) is the most common childhood leukemia, with a cure rate of 80%. Nevertheless, disease relapse is the most important prognostic factor for the disease outcome. We aimed to elucidate the role of Wnt secretion-regulating protein, Wntless (Wls)/GPR177, on disease outcome in pediatric patients with BCP ALL, and assess its pathogenetic role in the regulation of the disease. Wls expression was characterized and correlated with Wnt pathway signaling in the bone marrow leukemia cells isolated from 44 pediatric patients with BCP ALL. The overexpression of Wls was detected in leukemia cells and was significantly correlated with the disease relapse and poor survival in the patients. The high expression of Wls also correlated with the Wnt expression and consequent downstream signaling activation, which was shown to provide essential proliferation, transformation and anti-apoptotic activity during leukemogenesis. These results indicated that Wls played an essential role in disease relapse and poor survival in patients with BCP ALL. Therefore, Wls may provide a potential future therapeutic target, particularly for patients who do not respond to existing therapies and suffer relapse.

We have previously shown that kava and its flavokavain-free Fraction B completely blocked 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice with a preferential reduction in NNK-induced O 6-methylguanine (O 6-mG). In this study, we first identified natural (+)-dihydromethysticin (DHM) as a lead compound through evaluating the in vivo efficacy of five major compounds in Fraction B on reducing O 6-mG in lung tissues. (+)-DHM demonstrated outstanding chemopreventive activity against NNK-induced lung tumorigenesis in A/J mice with 97% reduction of adenoma multiplicity at a dose of 0.05mg/g of diet (50 ppm). Synthetic (±)-DHM was equally effective as the natural (+)-DHM in these bioassays while a structurally similar analog, (+)-dihydrokavain (DHK), was completely inactive, revealing a sharp in vivo structure–activity relationship. Analyses of an expanded panel of NNK-induced DNA adducts revealed that DHM reduced a subset of DNA adducts in lung tissues derived from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the active metabolite of NNK). Preliminary 17-week safety studies of DHM in A/J mice at a dose of 0.5mg/g of diet (at least 10x its minimum effective dose) revealed no adverse effects, suggesting that DHM is likely free of kava’s hepatotoxic risk. These results demonstrate the outstanding efficacy and promising safety margin of DHM in preventing NNK-induced lung tumorigenesis in A/J mice, with a unique mechanism of action and high target specificity.

High-risk human papillomavirus (HR-HPV) infections are necessary but insufficient agents of cervical and other epithelial cancers. Epidemiological studies support a causal, but ill-defined, relationship between tobacco smoking and cervical malignancies. In this study, we used mainstream tobacco smoke condensate (MSTS-C) treatments of cervical cell lines that maintain either episomal or integrated HPV16 or HPV31 genomes to model tobacco smoke exposure to the cervical epithelium of the smoker. MSTS-C exposure caused a dose-dependent increase in viral genome replication and correspondingly higher early gene transcription in cells with episomal HPV genomes. However, MSTS-C exposure in cells with integrated HR-HPV genomes had no effect on genome copy number or early gene transcription. In cells with episomal HPV genomes, the MSTS-C-induced increases in E6 oncogene transcription led to decreased p53 protein levels and activity. As expected from loss of p53 activity in tobacco-exposed cells, DNA strand breaks were significantly higher but apoptosis was minimal compared with cells containing integrated viral genomes. Furthermore, DNA mutation frequencies were higher in surviving cells with HPV episomes. These findings provide increased understanding of tobacco smoke exposure risk in HPV infection and indicate tobacco smoking acts more directly to alter HR-HPV oncogene expression in cells that maintain episomal viral genomes. This suggests a more prominent role for tobacco smoke in earlier stages of HPV-related cancer progression.

Rhabdomyosarcoma is a muscle-derived malignant tumor mainly affecting children. The most frequent variant, embryonal rhabdomyosarcoma (ERMS) is characterized by overexpression of the transcription factor, PAX7 which prevents ERMS cells from exiting the cell cycle and terminally differentiating. However, a role for PAX7 in the invasive properties of ERMS cells has not been investigated in detail thus far. Here we show that ectopic expression of receptor for advanced glycation end-products (RAGE) in human ERMS cells results in the activation of a RAGE/myogenin axis which downregulates PAX7 by transcriptional and post-translational mechanisms, as in normal myoblasts, and reduces metastasis formation. High PAX7 sustains migration and invasiveness in ERMS cells by upregulating EPHA3 and EFNA1 and downregulating NCAM1 thus decreasing the neural cell adhesion molecule (NCAM)/polysialylated-NCAM ratio. Microarray gene expression analysis shows that compared with the RAGE–ve TE671/WT cells and similarly to primary human myoblasts, TE671/RAGE cells show upregulation of genes involved in muscle differentiation and cell adhesion, and downregulation of cell migration related and major histocompatibility complex class I genes. Our data reveal a link between PAX7 and metastasis occurrence in ERMSs, and support a role for the RAGE/myogenin axis in metastasis suppression. Thus, low RAGE expression in ERMS primary tumors may be predictive of metastatic behavior.