• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center
 

Member Resources

Publications

Carcinogenesis

Carcinogenesis - RSS feed of current issue






The transcription factor PU.1, encoded by the murine Sfpi1 gene (SPI1 in humans), is a member of the Ets transcription factor family and plays a vital role in commitment and maturation of the myeloid and lymphoid lineages. Murine studies directly link primary acute myeloid leukaemia (AML) and decreased PU.1 expression in specifically modified strains. Similarly, a radiation-induced chromosome 2 deletion and subsequent Sfpi1 point mutation in the remaining allele lead to murine radiation-induced AML. Consistent with murine data, heterozygous deletion of the SPI1 locus and mutation of the –14kb SPI1 upstream regulatory element were described previously in human primary AML, although they are rare events. Other mechanisms linked to PU.1 downregulation in human AML include TP53 deletion, FLT3-ITD mutation and the recurrent AML1-ETO [t(8;21)] and PML-RARA [t(15;17)] translocations. This review provides an up-to-date overview on our current understanding of the involvement of PU.1 in the initiation and development of radiation-induced AML, together with recommendations for future murine and human studies.


Cancer gender disparity has been observed for a variety of human malignancies. Thyroid cancer is one such cancer with a higher incidence in women, but more aggressive disease in men. There is scant evidence on the role of sex hormones on cancer initiation/progression. Using a transgenic mouse model of follicular thyroid cancer (FTC), we found castration led to lower rates of cancer in females and less advanced cancer in males. Mechanistically, less advanced cancer in castrated males was due to increased expression of tumor suppressor (Glipr1, Sfrp1) and immune-regulatory genes and higher tumor infiltration with M1 macrophages and CD8 cells. Functional study showed that GLIPR1 reduced cell growth and increased chemokine secretion (Ccl5) that activates immune cells. Our data demonstrate that testosterone regulates thyroid cancer progression by reducing tumor suppressor gene expression and tumor immunity.


A major etiological risk factor for hepatocellular carcinoma (HCC) is infection by Hepatitis viruses, especially hepatitis B virus and hepatitis C virus. Hepatitis B virus and hepatitis C virus do not cause aggressive activation of an oncogenic pathway, but they transactivate a broad array of genes, cause chronic inflammation, and, through interference with mitotic processes, lead to mitotic error-induced chromosome instability (ME-CIN). However, how ME-CIN is involved in the development of HCC remains unclear. Delineating the effect of ME-CIN on HCC development should help in identifying measures to combat HCC. In this study, we used ME-CIN model mice haploinsufficient in Shugoshin 1 (Sgo1–/+) to assess the role of ME-CIN in HCC development. Treatment with the carcinogen azoxymethane caused Sgo1–/+ ME-CIN model mice to develop HCCs within 6 months, whereas control mice developed no HCC (P < 0.003). The HCC development was associated with expression of early HCC markers (glutamine synthetase, glypican 3, heat shock protein 70, and the serum marker alpha fetoprotein), although without fibrosis. ME-CIN preceded the expression of HCC markers, suggesting that ME-CIN is an important early event in HCC development. In 12-month-old untreated Sgo1 mice, persistent DNA damage, altered gene expression, and spontaneous HCCs were observed. Sgo1 protein accumulated in response to DNA damage in vitro. Overall, Sgo1–/+-mediated ME-CIN strongly promoted/progressed development of HCC in the presence of an initiator carcinogen, and it had a mild initiator effect by itself. Use of the ME-CIN model mice should help in identifying drugs to counteract the effects of ME-CIN and should accelerate anti-HCC drug development.


Gastric cancer (GC) is the second leading cause of global cancer mortality worldwide. However, the molecular mechanism underlying its carcinogenesis and drug resistance is not well understood. To identify novel functionally important genes that were differentially expressed due to combinations of genetic and epigenetic changes, we analyzed datasets containing genome-wide mRNA expression, DNA copy number alterations and DNA methylation status from 154 primary GC samples and 47 matched non-neoplastic mucosa tissues from Asian patients. We used concepts of ‘within’ and ‘between’ statistical analysis to compare the difference between tumors and controls within each platform, and assessed the correlations between platforms. This ‘multi-regulated gene (MRG)’ analysis identified 126 differentially expressed genes that underwent a combination of copy number and DNA methylation changes. Most genes were located at genomic loci associated with GC. Statistical enrichment analysis showed that MRGs were enriched for cancer, GC and drug response. We analysed several MRGs that previously had not been associated with GC. Knockdown of DDX27, TH1L or IDH3G sensitized cells to epirubicin or cisplatin, and knockdown of RAI14 reduced cell proliferation. Further studies showed that overexpression of DDX27 reduced epirubicin-induced DNA damage and apoptosis. Levels of DDX27 mRNA and protein were increased in early-stage gastric tumors, and may be a potential diagnostic and prognostic marker for GC. In summary, we used an integrative bioinformatics strategy to identify novel genes that are altered in GC and regulate resistance of GC cells to drugs in vitro.


Lynch syndrome (LS) is an inherited predisposition cancer syndrome, typically caused by germline mutations in the mismatch repair genes MLH1, MSH2, MSH6 and PMS2. In the last years, a role for epimutations of the same genes has also been reported. MLH1 promoter methylation is a well known mechanism of somatic inactivation in tumors, and more recently, several cases of constitutional methylation have been identified. In four subjects affected by multiple tumors and belonging to a suspected LS family, we detected a novel secondary MLH1 gene epimutation. The methylation of MLH1 promoter was always linked in cis with a 997 bp-deletion (c.-168_c.116+713del), that removed exon 1 and partially involved the promoter of the same gene. Differently from cases with constitutional primary MLH1 inactivation, this secondary methylation was allele-specific and CpGs of the residual promoter region were totally methylated, leading to complete allele silencing. In the colon tumor of the proband, MLH1 and PMS2 expression was completely lost as a consequence of a pathogenic somatic point mutation (MLH1 c.199G>A, p.Gly67Arg) that also abrogated local methylation by destroying a CpG site. The evidences obtained highlight how MLH1 mutations and epimutations can reciprocally influence each other and suggest that an altered structure of the MLH1 locus results in epigenetic alteration.


The pro-inflammatory cytokine interleukin-6 (IL-6) in tumor microenvironment has been suggested to promote development and progression of colorectal cancer (CRC). However, the underlying molecular mechanisms remain elusive. In this study, we demonstrate that fos-related antigen-1 (Fra-1) plays a critical role in IL-6 induced CRC aggressiveness and epithelial–mesenchymal transition (EMT). In CRC cell lines, the expression of Fra-1 gene was found significantly upregulated during IL-6-driven EMT process. The Fra-1 induction occurred at transcriptional level in a manner dependent on signal transducer and activator of transcription 3 (STAT3), during which both phosphorylated and acetylated post-translational modifications were required for STAT3 activation to directly bind to the Fra-1 promoter. Importantly, RNA interference-based attenuation of either STAT3 or Fra-1 prevented IL-6-induced EMT, cell migration and invasion, whereas ectopic expression of Fra-1 markedly reversed the STAT3-knockdown effect and enhanced CRC cell aggressiveness by regulating the expression of EMT-promoting factors (ZEB1, Snail, Slug, MMP-2 and MMP-9). Furthermore, Fra-1 levels were positively correlated with the local invasion depth as well as lymph node and liver metastasis in a total of 229 CRC patients. Intense immunohistochemical staining of Fra-1 was observed at the tumor marginal area adjacent to inflammatory cells and in parallel with IL-6 secretion and STAT3 activation in CRC tissues. Together, this study proposes the existence of an aberrant IL-6/STAT3/Fra-1 signaling axis leading to CRC aggressiveness through EMT induction, which suggests novel therapeutic opportunities for the malignant disease.


Malignant melanoma is the most deadly form of skin cancer. There is a critical need to identify the patients that could be successfully treated by surgery alone and those that require adjuvant treatment. In this study, we demonstrate that the expression of tribbles2 (TRIB2) strongly correlates with both the presence and progression of melanocyte-derived malignancies. We examined the expression of TRIB2 in addition to 12 previously described melanoma biomarkers across three independent full genome microarray studies. TRIB2 expression was consistently and significantly increased in benign nevi and melanoma, and was highest in samples from patients with metastatic melanoma. The expression profiles for the 12 biomarkers were poorly conserved throughout these studies with only TYR, S100B and SPP1 showing consistently elevated expression in metastatic melanoma versus normal skin. Strikingly we confirmed these findings in 20 freshly obtained primary melanoma tissue samples from metastatic lesions where the expression of these biomarkers were evaluated revealing that TRIB2 expression correlated with disease stage and clinical prognosis. Our results suggest that TRIB2 is a meaningful biomarker reflecting diagnosis and progression of melanoma, as well as predicting clinical response to chemotherapy.


Microsomal PGE2 synthase-1 (mPGES-1), the terminal enzyme in the formation of inducible PGE2, represents a potential target for cancer chemoprevention. We have previously shown that genetic abrogation of mPGES-1 significantly suppresses tumorigenesis in two preclinical models of intestinal cancer. In this study, we examined the role of mPGES-1 during colon tumorigenesis in the presence of dextran sulfate sodium (DSS)-induced inflammatory microenvironment. Using Apc 14/+ in which the mPGES-1 gene is either wild-type (D14:WT) or deleted (D14:KO), we report that mPGES-1 deficiency enhances sensitivity to acute mucosal injury. As a result of the increased epithelial damage, protection against adenoma formation is unexpectedly compromised in the D14:KO mice. Examining the DSS-induced acute injury, cryptal structures are formed within inflamed areas of colonic mucosa of both genotypes that display the hallmarks of early neoplasia. When acute epithelial injury is balanced by titration of DSS exposures, however, these small cryptal lesions progress rapidly to adenomas in the D14:WT mice. Given that mPGES-1 is highly expressed within the intestinal stroma under the inflammatory conditions of DSS-induced ulceration, we propose a complex and dual role for inducible PGE2 synthesis within the colonic mucosa. Our data suggest that inducible PGE2 is critical for the maintenance of an intact colonic epithelial barrier, while promoting epithelial regeneration. This function is exploited during neoplastic transformation in Apc 14/+ mice as PGE2 contributes to the growth and expansion of the early initiated cryptal structures. Taken together, inducible PGE2 plays a complex role in inflammation-associated cancers that requires further analysis.

Inducible PGE2 production by mPGES-1 is critical for the colonic mucosal homeostasis. This function is exploited in the presence of the neoplastic transformation in Apc 14/+ mice as PGE2 contributes to the growth and expansion of the early cryptal structures.


Activation of signaling dependent on the mammalian target of rapamycin (mTOR) has been demonstrated in a variety of human malignancies, and our previous work suggests that mTOR complex (mTORC) 1 and mTORC2 may play unique roles in skin tumorigenesis. The purpose of these studies was to investigate the function of mTORC2-dependent pathways in skin tumor development and the maintenance of established tumors. Using mice that allow spatial and temporal control of mTORC2 in epidermis by conditional knockout of its essential component Rictor, we studied the effect of mTORC2 loss on both epidermal proliferation and chemical carcinogenesis. The results demonstrate that mTORC2 is dispensable for both normal epidermal proliferation and the hyperproliferative response to treatment with tetradecanoyl phorbol acetate (TPA). In contrast, deletion of epidermal Rictor prior to initiation in DMBA/TPA chemical carcinogenesis was sufficient to dramatically delay tumor development and resulted in reduced tumor number and size compared with control groups. Silencing of Rictor expression in tumor-bearing animals triggered regression of established tumors and increased caspase-3 cleavage without changes in proliferation. In vitro experiments demonstrate an increased sensitivity to caspase-dependent apoptosis in the absence of rictor, which is dependent on mTORC2 signaling. These studies demonstrate that mTORC2 activation is essential for keratinocyte survival, and suggest that inhibition of mTORC2 has value in chemoprevention by eliminating carcinogen-damaged cells during the early stages of tumorigenesis, and in therapy of existing tumors by restricting critical pro-survival pathways.


Aldehyde dehydrogenase 1 (ALDH1) is a cancer stem-like cell (CSC) marker in human cancers; however, the specific ALDH1-regulated function and its underlying signalling pathways have not been fully demonstrated. Here, we investigated the ALDH1-regulated function and its underlying signalling and tested whether all-trans retinoic acid (ATRA) can suppress ALDH1-regulated tumour behaviour in ovarian cancer cells. By modulating ALDH1 expression using flow cytometry enrichment and exogenous overexpression or knockdown, we showed that the ALDH1 activity is positively correlated with stemness in ovarian cancer cells according to measures such as sphere formation and CSC marker expression as well as tumourigenesis in a mouse xenograft model. The findings indicate that the ALDH1 directly regulates the functions of ovarian cancer cells. We also showed that ALDH1 can regulate the expression of FoxM1 and Notch 1, which are involved in the downstream signalling of ALDH1-mediated biofunctions. Inhibition of FoxM1 by Thiostrepton and of Notch1 by DAPT downregulated the sphere formation ability of cells. ATRA reduced ALDH1 expression, suppressed tumour formation and inhibited sphere formation, cell migration and invasion in ALDH1-abundant ovarian cancer cells. We conclude that ATRA downregulates ALDH1/FoxM1/Notch1 signalling and suppresses tumour formation in ovarian cancer cells.