• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources


Clinical Cancer Research

Clinical Cancer Research RSS feed -- current issue
Clinical Cancer Research

Increased secretion of EGFR ligands amphiregulin and TGFα by limited KRAS-mutant clones is suggested as a paracrine resistance mechanism to anti-EGFR antibodies in colorectal cancer models. These findings are biologically sound but need to be replicated, including in the clinical setting, to foresee whether they are clinically relevant and therapeutically exploitable. Clin Cancer Res; 20(24); 6227–9. ©2014 AACR.

Radiotherapy induces galectin-1 (Gal-1) secretion by tumors, which induces CD8+ T-cell apoptosis and lymphopenia. These effects are substantially decreased by Gal-1 shRNA. Inhibition of Gal-1 may be an effective strategy for overcoming radiation-induced lymphopenia, which may improve clinical outcomes. Clin Cancer Res; 20(24); 6230–2. ©2014 AACR.

Recent advances in molecular technology have unraveled the complexity of leukemogenesis and provided the opportunity to design more personalized and pathophysiology-targeted therapeutic strategies. Despite the use of intensive chemotherapy, relapse remains the most common cause for therapeutic failure in acute myelogenous leukemia (AML). The interactions between leukemia stem cells (LSC) and marrow microenvironment appear to be critical in promoting therapeutic resistance through progressive acquisition of genetic and epigenetic changes within leukemia cells and immune evasion, resulting in leukemia cell survival. With advances in genomic-sequencing efforts, epigenetic and phenotypic characterization, personalized therapeutic strategies aimed at critical leukemia survival mechanisms may be feasible in the near future. Here, we review select novel approaches to therapy of AML such as targeting LSC, altering leukemia/marrow microenvironment interactions, inhibiting DNA repair or cell-cycle checkpoints, and augmenting immune-based antileukemia activity. Clin Cancer Res; 20(24); 6233–41. ©2014 AACR.

Awareness of breast cancer heterogeneity has strikingly increased in the past decade in parallel with the development of high-throughput molecular tests. Beyond the clear usefulness of antiestrogen treatment in luminal tumors and trastuzumab in HER2-positive tumors, breast cancer subtypes may have additional clinical and predictive roles that can be relevant to clinical practice. In this article, we discuss the significance of molecular subtypes in the systemic treatment of early-stage breast tumors smaller than 1 cm (T1a,bN0M0) and suggest new strategies for future treatment recommendations for these patients. Clin Cancer Res; 20(24); 6242–6. ©2014 AACR.

One of the most unexpected discoveries in molecular oncology over the last decade is the interplay between abnormalities in protein-coding genes and short noncoding microRNAs (miRNA) that are causally involved in cancer initiation, progression, and dissemination. This phenomenon was initially defined in malignant cells; however, in recent years, more data have accumulated describing the active participation of miRNAs produced by microenvironment cells. As hormones, miRNAs can be released by a donor cell in various forms of vesicles or as "free" molecules secreted by active mechanisms. These miRNAs spread as signaling molecules that are uptaken either as exosomes or as "free" RNAs, by cells located in other parts of the organism. Here, we discuss the communication between cancer cells and the microenvironment through miRNAs. We further expand this in a more translational context and present miRNAs as predictors of treatment response, as crucial agents in targeted therapeutics, and as significant molecules to target. Clin Cancer Res; 20(24); 6247–53. ©2014 AACR.

PSA has led to a drastic increase in the detection of prostate cancer, rendering this biomarker the gateway for the diagnostic pathway of prostatic neoplasms. However, the increase in incidence has not been mirrored by a similar reduction in mortality. Widespread PSA testing has facilitated the overdiagnosis and overtreatment of indolent disease. To reduce this phenomenon and avoid negative repercussions on the quality of life of men undergoing unnecessary therapies, the diagnostic pathway of prostate cancer needs to be improved. Multiparametric MRI (mp-MRI) can enhance the sensitivity and specificity of PSA, as well as the shortcomings of random biopsy sampling. This novel imaging technique has been proven to identify larger and more aggressive cancer foci, which should be targeted for treatment. New technological developments now allow for fusion of mp-MRI images with real-time ultrasound, opening the way to lesion-targeted biopsies. Furthermore, mp-MRI and targeted biopsies can also improve active surveillance protocols and permit more conservative focal therapy strategies. By implementing targeted biopsies, the diagnostic pathway will focus on clinically significant disease, consequently reducing overdiagnosis and overtreatment. Before this novel protocol becomes the new gold standard, mp-MRI acquisition and interpretation need to be standardized and targeted-biopsy strategies need to be further validated prior to abandoning random-sampling ones. Several multidisciplinary consortiums are already working on the standardization of prostate MRI, and there are ongoing prospective trials on targeted biopsies and MRI. Soon, imaging of prostatic lesions and selected biopsies will modify the diagnostic evaluation of prostate cancer, reducing overtreatment and therapy-derived complications that negatively affect quality of life. Clin Cancer Res; 20(24); 6254–7. ©2014 AACR.

Immuno-oncology is an evolving treatment modality that includes immunotherapies designed to harness the patient's own immune system. This approach is being studied for its potential to improve long-term survival across multiple tumor types. It is now important to determine how immunotherapies may be most effectively used to achieve the best possible patient outcomes. Combining or sequencing immunotherapies that target distinct immune pathways is a logical approach, with the potential to further enhance the magnitude of the antitumor immune response over single agents. Early clinical data in patients with melanoma treated with two immune checkpoint inhibitors, ipilimumab and nivolumab, suggest support for this combination approach. Numerous other combination approaches are being evaluated in early-phase clinical trials; however, their clinical activity remains unknown. Clinical experience to date has shown that when combining an immuno-oncology agent with an existing therapeutic modality, it is important to determine the optimal dose, schedule, and sequence. Clin Cancer Res; 20(24); 6258–68. ©2014 AACR.

Purpose: Patients previously treated with ketoconazole were excluded from phase III trials of abiraterone acetate due to potential overlapping mechanism of action. The purpose of this study was to determine the clinical utility of abiraterone and its impact on circulating androgens following ketoconazole.

Experimental Design: Chemotherapy-naïve patients with progressive metastatic castration-resistant prostate cancer (mCRPC) and prior ketoconazole therapy ≥28 days received abiraterone acetate 1,000 mg daily and prednisone 5 mg twice daily. The primary endpoint was the proportion of patients with PSA response, defined as ≥30% PSA decline at 12 weeks. H0 = 0.30 versus H1 = 0.50 (α = 0.05, power = 0.83). Circulating androgen levels were measured using liquid chromatography tandem mass spectrometry.

Results: Thirty-nine patients were included in the final analysis. Twenty (51%; 95% confidence interval, 36%–66%) patients had ≥30% PSA decline; the null hypothesis was rejected. Sixteen (41%) had ≥50% PSA decline. Median PFS (progression-free survival) was 16 weeks; median radiographic PFS (rPFS) was 36 weeks. Samples for measurement of baseline androgens were available in 37 patients. The PSA response proportion was 59% in 29 patients with DHEA ≥ limit of quantitation (LOQ), compared with 13% in 8 patients with DHEA < LOQ (P = 0.042). Median PFS was 6 and 16 weeks in DHEA < LOQ and DHEA ≥ LOQ patients, respectively (P = 0.017); median rPFS was 14 and 36 weeks in DHEA < LOQ and DHEA ≥ LOQ patients, respectively (P < 0.001).

Conclusions: Abiraterone demonstrates modest clinical efficacy in mCRPC patients previously treated with ketoconazole. Patients with DHEA ≥ LOQ were more likely to demonstrate PSA responses and longer PFS. Analysis of circulating androgens merits further investigation as a biomarker for response to androgen synthesis inhibitor therapy. Clin Cancer Res; 20(24); 6269–76. ©2014 AACR.

Purpose: AEZS-108, formerly AN-152, is a cytotoxic hybrid molecule consisting of a luteinizing hormone-releasing hormone (LHRH) agonist moiety covalently coupled to doxorubicin, allowing it to deliver doxorubicin selectively to cells expressing LHRH receptors. LHRH receptors are expressed on the cell membrane of many tumors, including prostate cancer. This phase I study determined the maximum tolerated dose (MTD) of AEZS-108 in men with taxane- and castration-resistant prostate cancer (CRPC) while providing additional information on the safety profile and efficacy of this agent.

Experimental Design: AEZS-108 was administered as an intravenous infusion every 21 days until progression or unacceptable toxicity in cohorts of 3 or 6 patients until the MTD was reached. Blood was collected for capture of circulating tumor cells (CTC) to visualize internalization of AEZS-108, an autofluorescent molecule.

Results: The MTD of AEZS-108 in this cohort was 210 mg/m2, which was lower than that seen in a phase I study conducted in women with endometrial or ovarian cancers. The dose-limiting toxicity was persistent neutropenia. Three patients had a PSA response with an additional 10 patients maintaining PSA stable disease. Of the 10 patients evaluable by RECIST criteria, 9 achieved stable disease. AEZS-108 internalization in CTCs was routinely visualized using its autofluorescence.

Conclusion: These findings show that AEZS-108 has an acceptable safety profile and a signal of efficacy, lowering PSA in heavily pretreated patients with prostate cancer, and that internalization of AEZS-108 in prostate cancer CTCs may be a viable pharmacodynamic marker. A phase II study in men with prostate cancer is ongoing. Clin Cancer Res; 20(24); 6277–83. ©2014 AACR.

Purpose: Receptor tyrosine kinases c-Met and Ron transduce signals regulating cell migration and matrix invasion. This phase I dose-escalation trial tested golvatinib, a highly potent, small-molecule, ATP-competitive inhibitor of c-Met and multiple members of the Eph receptor family plus c-Kit and Ron.

Experimental Design: Patients with advanced solid tumors received golvatinib orally, once daily, continuously. Using a "3+3" design, dosing started at 100 mg once daily, escalating to the maximum tolerated dose (MTD) defined by dose-limiting toxicities. Pharmacokinetic, pharmacodynamic, and preliminary antitumor activity was assessed during dose escalation and in a MTD expansion cohort.

Results: Thirty-four patients were treated at six dose levels. The MTD was determined as 400 mg once daily. Three dose-limiting toxicities were observed: grade 3 increased -glutamyltransferase and alkaline phosphatase (200 mg), repeated grade 2 fatigue, and grade 3 fatigue (50.0%). Frequent treatment-related adverse events (with incidence >10%) included diarrhea (58.8%), nausea (50%), vomiting (44.1%), fatigue (41.2%), decreased appetite (32.4%), elevated alanine aminotransferase (32.4%), elevated aspartate aminotransferase (20.6%), dry skin (11.8%), and dysgeusia (11.8%). Best overall response was stable disease (median duration 85 days, range 85–237). Pharmacokinetics demonstrated high variability, although maximum plasma concentration and area under the plasma concentration–time curve increased with dose. Soluble urokinase-type plasminogen activator receptor, VEGFR2, c-Met, and angiopoietin-2 levels increased after dose. Posttreatment decrease in either p-c-Met or p-ERK was observed in 3 of 4 paired biopsies at MTD.

Conclusions: Golvatinib at the MTD of 400 mg once daily was well tolerated with pharmacodynamic evidence of c-Met target modulation. Clin Cancer Res; 20(24); 6284–94. ©2014 AACR.

Purpose: This phase I trial evaluated the safety, pharmacokinetics, and pharmacodynamics of demcizumab (OMP-21M18), a humanized IgG2 mAb targeting the Notch ligand DLL4 in adult patients with advanced malignancies.

Experimental Design: Standard 3+3 design, with demcizumab 0.5, 1, 2.5, or 5 mg/kg weekly or 2.5, 5, or 10 mg/kg every other week, with an expansion cohort at 10 mg/kg every other week. Dose-limiting toxicities (DLT) were assessed during the first 28 days.

Results: Fifty-five patients received demcizumab (15 weekly, 18 every other week, 21 expansion cohort, 1 loading dose). No more than one DLT was seen at any dose level. The MTD was not reached for either schedule. Treatment-related adverse events occurring in >10% of patients were hypertension or blood pressure increased (47%), fatigue (31%), anemia (22%), headache (20%), nausea (13%), hypoalbuminemia (11%), dizziness (11%), and dyspnea (11%). One patient dosed at 2.5 mg/kg developed reversible right-sided heart failure after 63 days on treatment and 4 dosed at 10 mg/kg developed congestive heart failure after ≥98 days on treatment. Five patients were hospitalized with bleeding episodes (2 episodes of tumor-associated bleeding). Sixteen of 25 (64%) evaluable patients at 10 mg/kg had evidence of stabilization of disease or response.

Conclusion: Demcizumab was generally well tolerated at doses ≤5 mg weekly with disease stabilization and decreases in tumor size demonstrating antitumor activity. Hypertension was the most common adverse event that was clearly related to treatment. Prolonged administration was associated with an increased risk of congestive heart failure. Clin Cancer Res; 20(24); 6295–303. ©2014 AACR.

Purpose: Preclinical data indicate anti-invasive activity of APG101, a CD95 ligand (CD95L)–binding fusion protein, in glioblastoma.

Experimental Design: Patients (N = 91) with glioblastoma at first or second progression were randomized 1:2 between second radiotherapy (rRT; 36 Gy; five times 2 Gy per week) or rRT+APG101 (400 mg weekly i.v.). Patient characteristics [N = 84 (26 patients rRT, 58 patients rRT+APG101)] were balanced.

Results: Progression-free survival at 6 months (PFS-6) rates were 3.8% [95% confidence interval (CI), 0.1–19.6] for rRT and 20.7% (95% CI, 11.2–33.4) for rRT+APG101 (P = 0.048). Median PFS was 2.5 (95% CI, 2.3–3.8) months and 4.5 (95% CI, 3.7–5.4) months with a hazard ratio (HR) of 0.49 (95% CI, 0.27–0.88; P = 0.0162) adjusted for tumor size. Cox regression analysis adjusted for tumor size revealed a HR of 0.60 (95% CI, 0.36–1.01; P = 0.0559) for rRT+APG101 for death of any cause. Lower methylation levels at CpG2 in the CD95L promoter in the tumor conferred a stronger risk reduction (HR, 0.19; 95% CI, 0.06–0.58) for treatment with APG101, suggesting a potential biomarker.

Conclusions: CD95 pathway inhibition in combination with rRT is an innovative concept with clinical efficacy. It warrants further clinical development. CD95L promoter methylation in the tumor may be developed as a biomarker. Clin Cancer Res; 20(24); 6304–13. ©2014 AACR.

Purpose: To examine the utility and reliability of obtaining early echocardiographic measurements of left ventricular (LV) remodeling as well as blood biomarkers of cardiac injury in asymptomatic childhood cancer survivors at risk for LV dysfunction and congestive heart failure due to past exposure to anthracycline chemotherapy.

Experimental Design: Using a cross-sectional design, anthracycline-exposed childhood cancer survivors with preserved ejection fraction (EF; ≥50%) were evaluated using early echocardiographic indices and blood biomarkers of LV dysfunction. Survivors treated with ≥300 mg/m2 anthracyclines [high risk (HR): n = 100] were compared with those treated with <300 mg/m2 anthracyclines [low risk (LR): n = 50] and matched healthy controls (HC: n = 50). All echocardiograms were interpreted by an institutional cardiologist and a study cardiologist blinded to risk status.

Results: Time from diagnosis was comparable for HR (12.0 years) and LR (13.2 years, P = 0.8) survivors. Echocardiograms: HR had lower LV thickness-dimension ratio (Z-score: HR: –0.62, LR: –0.03, HC: –0.02; P < 0.001), increased LV wall stress (HR: 66.7 g/cm2, LR: 56.6 g/cm2, HC: 54.2 g/cm2; P < 0.01), and higher myocardial performance index (HR: 0.51, LR: 0.46, HC: 0.46; P < 0.01). Interobserver correlation (clinical/blinded reading) for all echocardiographic indices was excellent (range: R = 0.76–0.97, P < 0.001). Blood biomarkers: With the exception of NT-proBNP (r = 0.28, P < 0.01), there was no correlation between blood biomarkers (B-type natriuretic peptide, Troponin-T, ST-2, Galectin-3) and LV dysfunction.

Conclusion: Childhood cancer survivors with preserved EF 10+ years from anthracycline exposure had dose-dependent changes in echocardiographic markers of LV dysfunction. Clin Cancer Res; 20(24); 6314–23. ©2014 AACR.

Purpose: The aim of this study was to identify noninvasive pharmacodynamic biomarkers of FGFR3-targeted therapies in bladder cancer to facilitate the clinical development of experimental agent targeting FGFR3.

Experimental Design: Potential soluble pharmacodynamic biomarkers of FGFR3 were identified using a combination of transcriptional profiling and biochemical analyses in preclinical models. Two matrix metalloproteinases (MMP), MMP-1 and MMP-10, were selected for further studies in human bladder cancer xenograft models treated with a specific anti-FGFR3 monoclonal antibody, R3Mab. Serum and urinary levels of MMP-1 and MMP-10 were determined in healthy donors and patients with bladder cancer. The modulation of MMP-1 and MMP-10 by R3Mab in patients with bladder cancer was further evaluated in a phase I dose-escalation study.

Results: MMP-1 and MMP-10 mRNA and protein were downmodulated by FGFR3 shRNA and R3Mab in bladder cancer cell lines. FGFR3 signaling promoted the expression and secretion of MMP-1 and pro-MMP-10 in a MEK-dependent fashion. In bladder cancer xenograft models, R3Mab substantially blocked tumor progression and reduced the protein levels of human MMP-1 and pro-MMP-10 in tumor tissues as well as in mouse serum. Furthermore, both MMP-1 and pro-MMP-10 were elevated in the urine of patients with advanced bladder cancer. In a phase I dose-escalation trial, R3Mab administration resulted in an acute reduction of urinary MMP-1 and pro-MMP-10 levels in patients with bladder cancer.

Conclusion: These findings reveal a critical role of FGFR3 in regulating MMP-1 and pro-MMP-10 expression and secretion, and identify urinary MMP-1 and pro-MMP-10 as potential pharmacodynamic biomarkers for R3Mab in patients with bladder cancer. Clin Cancer Res; 20(24); 6324–35. ©2014 AACR.

Purpose: This study aimed to assess MET amplification among different cancers, association with clinical factors and genetic aberrations and targeted therapy response modifications.

Experimental Design: From May 2010 to November 2012, samples from patients with advanced tumors referred to the MD Anderson Phase I Clinic were analyzed for MET gene amplification by FISH. Patient demographic, histologic characteristics, molecular characteristics, and outcomes in phase I protocols were compared per MET amplification status.

Results: Of 1,115 patients, 29 (2.6%) had MET amplification. The highest prevalence was in adrenal (2 of 13; 15%) and renal (4 of 28; 14%) tumors, followed by gastroesophageal (6%), breast (5%), and ovarian cancers (4%). MET amplification was associated with adenocarcinomas (P = 0.007), high-grade tumors (P = 0.003), more sites of metastasis, higher BRAF mutation, and PTEN loss (all P < 0.05). Median overall survival was 7.23 and 8.62 months for patients with and without a MET amplification, respectively (HR = 1.12; 95% confidence intervals, 0.83–1.85; P = 0.29). Among the 20 patients with MET amplification treated on a phase I protocol, 4 (20%) achieved a partial response with greatest response rate on agents targeting angiogenesis (3 of 6, 50%). No patient treated with a c-MET inhibitor (0 of 7) achieved an objective response.

Conclusion: MET amplification was detected in 2.6% of patients with solid tumors and was associated with adenocarcinomas, high-grade histology, and higher metastatic burden. Concomitant alterations in additional pathways (BRAF mutation and PTEN loss) and variable responses on targeted therapies, including c-MET inhibitors, suggest that further studies are needed to target this population. Clin Cancer Res; 20(24); 6336–45. ©2014 AACR.

Purpose: The lack of secreted biomarkers measurable by noninvasive tests hampers the development of effective targeted therapies against cancer. Our hypothesis is that cetuximab (an anti-EGFR mAb) induces a specific secretome in colorectal cancer cells that could be exploited for biomarker discovery.

Experimental Design: Considering the strong correlation between mutated KRAS and a lack of response to cetuximab therapy, we addressed whether performing secretome-based proteomics on isogenic colorectal cancer cells sharing the KRAS mutations found on patients would yield candidate-secreted biomarkers useful in the clinical setting. Because 2D culture did not optimally model the sensitivity/resistance to cetuximab observed in colorectal cancer patients, we moved to 3D spheroids, developing a methodology for both cell-based assays and quantitative proteomics.

Results: A large comparative quantitative proteomic analysis of the 3D secretomes of colorectal cancer isogenic cells treated with cetuximab uncovered an EGFR pathway-centric secretome found only when cells grow in 3D. The validation of the secretome findings in plasma of colorectal cancer patients, suggests that phosphorylated-EGFR (pEGFR) is a candidate-secreted biomarker of response to cetuximab.

Conclusions: We have proved that 3D spheroids from colorectal cancer cells generate secretomes with a drug-sensitivity profile that correlates well with patients with colorectal cancer, illustrating molecular connections between intracellular and extracellular signaling. Furthermore, we show how the secretion of pEGFR is associated with the sensitivity of colorectal cancer cells to cetuximab and the response of patients with colorectal cancer to the drug. Our work could allow the noninvasive monitoring of anti-EGFR treatment in patients with colorectal cancer. Clin Cancer Res; 20(24); 6346–56. ©2014 AACR.

Purpose: To explore alterations in gene promoter methylation as a potential cause of acquired drug resistance to doxorubicin or combined treatment with 5-fluorouracil and mitomycin C in human breast cancers.

Experimental Design: Paired tumor samples from locally advanced breast cancer patients treated with doxorubicin and 5-fluorouracil-mitomycin C were used in the genome-wide DNA methylation analysis as discovery cohort. An enlarged cohort from the same two prospective studies as those in the discovery cohort was used as a validation set in pyrosequencing analysis.

Results: A total of 469 genes were differentially methylated after treatment with doxorubicin and revealed a significant association with canonical pathways enriched for immune cell response and cell-cycle regulating genes including CDKN2A, CCND2, CCNA1, which were also associated to treatment response. Treatment with FUMI resulted in 343 differentially methylated genes representing canonical pathways such as retinoate biosynthesis, gαi signaling, and LXR/RXR activation. Despite the clearly different genes and pathways involved in the metabolism and therapeutic effect of both drugs, 46 genes were differentially methylated before and after treatment with both doxorubicin and FUMI. DNA methylation profiles in genes such as BRCA1, FOXC1, and IGFBP3, and most notably repetitive elements like ALU and LINE1, were associated with TP53 mutations status.

Conclusion: We identified and validated key cell-cycle regulators differentially methylated before and after neoadjuvant chemotherapy such as CDKN2A and CCNA1 and reported that methylation patterns of these genes may be potential predictive markers to anthracycline/mitomycine sensitivity. Clin Cancer Res; 20(24); 6357–66. ©2014 AACR.

Purpose: Prostate stem cell antigen (PSCA) is highly expressed in local prostate cancers and prostate cancer bone metastases and its expression correlates with androgen receptor activation and a poor prognosis. In this study, we investigate the potential clinical applications of immunoPET with the anti-PSCA A11 minibody, an antibody fragment optimized for use as an imaging agent. We compare A11 minibody immunoPET to 18F-Fluoride PET bone scans for detecting prostate cancer bone tumors and evaluate the ability of the A11 minibody to image tumor response to androgen deprivation.

Experimental Design: Osteoblastic, PSCA-expressing, LAPC-9 intratibial xenografts were imaged with serial 124I-anti-PSCA A11 minibody immunoPET and 18F-Fluoride bone scans. Mice bearing LAPC-9 subcutaneous xenografts were treated with either vehicle or MDV-3100 and imaged with A11 minibody immunoPET/CT scans pre- and posttreatment. Ex vivo flow cytometry measured the change in PSCA expression in response to androgen deprivation.

Results: A11 minibody demonstrated improved sensitivity and specificity over 18F-Fluoride bone scans for detecting LAPC-9 intratibial xenografts at all time points. LAPC-9 subcutaneous xenografts showed downregulation of PSCA when treated with MDV-3100 which A11 minibody immunoPET was able to detect in vivo.

Conclusions: A11 minibody immunoPET has the potential to improve the sensitivity and specificity of clinical prostate cancer metastasis detection over bone scans, which are the current clinical standard-of-care. A11 minibody immunoPET additionally has the potential to image the activity of the androgen signaling axis in vivo which may help evaluate the clinical response to androgen deprivation and the development of castration resistance. Clin Cancer Res; 20(24); 6367–78. ©2014 AACR.

Purpose: To examine the relationship between the expression of 7 promising apoptotic/cell proliferation proteins (Ki-67, p53, MDM2, bcl-2, bax, p16, and Cox-2) and risk of distant metastasis.

Experimental Design: RTOG 92-02 compared external beam radiotherapy (EBRT) to approximately 70 Gy + short-term androgen deprivation therapy (STADT) with EBRT + long-term ADT (LTADT). Immunohistochemical analysis was available for ≥4 biomarkers in 616 of 1,521 assessable cases. Biomarkers were evaluated individually and jointly via multivariable modeling of distant metastasis using competing risks hazards regression, adjusting for age, prostate-specific antigen, Gleason score, T stage, and treatment.

Results: Modeling identified four biomarkers (Ki-67, MDM2, p16 and Cox-2) that were jointly associated with distant metastasis. The c-index was 0.77 for the full model and 0.70 for the model without the biomarkers; a relative improvement of about 10% (likelihood ratio P < 0.001). Subdivision of the patients into quartiles based on predicted distant metastasis risk identified a high-risk group with 10-year distant metastasis risk of 52.5% after EBRT + STADT and 31% with EBRT + LTADT; associated 10-year prostate cancer–specific mortality (PCSM) risks were 45.9% and 14.5% with STADT and LTADT.

Conclusion: Four biomarkers were found to contribute significantly to a model that predicted distant metastasis and identified a subgroup of patients at a particularly high risk of both distant metastasis and PCSM when EBRT + STADT was used. LTADT resulted in significant reductions in distant metastasis and improvements in PCSM, and there was a suggestion of greater importance in the very high risk subgroup. Clin Cancer Res; 20(24); 6379–88. ©2014 AACR.

Purpose: Increased tumor metabolism and hypoxia are related to poor prognosis in solid tumors, including non–small cell lung cancer (NSCLC). PET imaging is a noninvasive technique that is frequently used to visualize and quantify tumor metabolism and hypoxia. The aim of this study was to perform an extensive comparison of tumor metabolism using 2[18F]fluoro-2-deoxy-d-glucose (FDG)-PET and hypoxia using HX4-PET imaging.

Experimental Design: FDG- and HX4-PET/CT images of 25 patients with NSCLC were coregistered. At a global tumor level, HX4 and FDG parameters were extracted from the gross tumor volume (GTV). The HX4 high-fraction (HX4-HF) and HX4 high-volume (HX4-HV) were defined using a tumor-to-blood ratio > 1.4. For FDG high-fraction (FDG-HF) and FDG high-volume (FDG-HV), a standardized uptake value (SUV) > 50% of SUVmax was used. We evaluated the spatial correlation between HX4 and FDG uptake within the tumor, to quantify the (mis)match between volumes with a high FDG and high HX4 uptake.

Results: At a tumor level, significant correlations were observed between FDG and HX4 parameters. For the primary GTV, the HX4-HF was three times smaller compared with the FDG-HF. In 53% of the primary lesions, less than 1 cm3 of the HX4-HV was outside the FDG–HV; for 37%, this volume was 1.9 to 12 cm3. Remarkably, a distinct uptake pattern was observed in 11%, with large hypoxic volumes localized outside the FDG-HV.

Conclusion: Hypoxic tumor volumes are smaller than metabolic active volumes. Approximately half of the lesions showed a good spatial correlation between the PET tracers. In the other cases, a (partial) mismatch was observed. The addition of HX4-PET imaging has the potential to individualize patient treatment. Clin Cancer Res; 20(24); 6389–97. ©2014 AACR.

Purpose: The role of the minimal residual disease (MRD) in follicular lymphoma is still debated. In this study, we assessed whether the BCL2/IGH rearrangement could have a prognostic role in patients receiving R-CHOP, R-FM, or R-CVP.

Experimental Design: DNAs from 415 patients among the 504 cases enrolled in the FOLL05 trial (NCT00774826) were centralized and assessed for the BCL2/IGH at diagnosis, at the end of treatment, and after 12 and 24 months.

Results: At diagnosis, the molecular marker was detected in 53% of cases. Patients without molecular marker or with a low molecular tumor burden (<1 x 10–4 copies) showed higher complete remission (CR) rate and longer progression-free survival (PFS; 3-year PFS 80% vs. 59%; P = 0.015). PFS was significantly conditioned by the PCR status at 12 and 24 months, with 3-year PFS of 66% for MRD cases versus 41% for those MRD+ at 12 months (P = 0.015), and 84% versus 50% at 24 months (P = 0.014). The MRD negativity at 12 and 24 months resulted in an improved PFS both in CR and in partial remission (PR) patients (3-year PFS = 72% for cases CR/PCR vs. 32% for those CR/PCR+ vs. 62% for those PR/PCR and 25% for patients in PR/PCR+; P = 0.001). The prognostic value of MRD at 12 and 24 months of follow-up was confirmed also in multivariate analysis.

Conclusions: In this study, standardized molecular techniques have been adopted and applied on bone marrow samples from a large cohort. Data reported show that the MRD detection is a powerful independent predictor of PFS in patients with follicular lymphoma receiving conventional chemoimmunotherapy. Clin Cancer Res; 20(24); 6398–405. ©2014 AACR.

Purpose: This study characterized the therapeutic efficacy of a systemically administered formulation of 3-bromopyruvate (3-BrPA), microencapsulated in a complex with β-cyclodextrin (β-CD), using an orthotopic xenograft mouse model of pancreatic ductal adenocarcinoma (PDAC).

Experimental Design: The presence of the β-CD–3-BrPA complex was confirmed using nuclear magnetic resonance spectroscopy. Monolayer as well as three-dimensional organotypic cell culture was used to determine the half-maximal inhibitory concentrations (IC50) of β-CD–3-BrPA, free 3-BrPA, β-CD (control), and gemcitabine in MiaPaCa-2 and Suit-2 cell lines, both in normoxia and hypoxia. Phase-contrast microscopy, bioluminescence imaging (BLI), as well as zymography and Matrigel assays were used to characterize the effects of the drug in vitro. An orthotopic lucMiaPaCa-2 xenograft tumor model was used to investigate the in vivo efficacy.

Results: β-CD–3-BrPA and free 3-BrPA demonstrated an almost identical IC50 profile in both PDAC cell lines with higher sensitivity in hypoxia. Using the Matrigel invasion assay as well as zymography, 3-BrPA showed anti-invasive effects in sublethal drug concentrations. In vivo, animals treated with β-CD–3-BrPA demonstrated minimal or no tumor progression as evident by the BLI signal as opposed to animals treated with gemcitabine or the β-CD (60-fold and 140-fold signal increase, respectively). In contrast to animals treated with free 3-BrPA, no lethal toxicity was observed for β-CD–3-BrPA.

Conclusion: The microencapsulation of 3-BrPA represents a promising step towards achieving the goal of systemically deliverable antiglycolytic tumor therapy. The strong anticancer effects of β-CD–3-BrPA combined with its favorable toxicity profile suggest that clinical trials, particularly in patients with PDAC, should be considered. Clin Cancer Res; 20(24); 6406–17. ©2014 AACR.

Purpose: The aim of our study is to elucidate whether T cells expressing GPC3-targeted chimeric antigen receptor (CAR) can efficiently eliminate GPC3-positive HCC cells and their potential in the treatment of HCC.

Experimental Design: T cells expressing a first-generation and third-generation GPC3-targeted CAR were prepared using lentiviral vector transduction. The in vitro and in vivo cytotoxic activities of the genetically engineered CAR T cells were evaluated against various HCC cell lines.

Results: GPC3-targeted CAR T cells could efficiently kill GPC3-positive HCC cells but not GPC3-negative cells in vitro. These cytotoxic activities seemed to be positively correlated with GPC3 expression levels in the target cells. In addition, T cells expressing the third-generation GPC3-targeted CAR could eradicate HCC xenografts with high level of GPC3 expression and efficiently suppress the growth of HCC xenografts with low GPC3 expression level in vivo. The survival of the mice bearing established orthotopic Huh-7 xenografts was significantly prolonged by the treatment with the third-generation GPC3-targeted CAR T cells.

Conclusions: GPC3-targeted CAR T cells could potently eliminate GPC3-positive HCC cells, thereby providing a promising therapeutic intervention for GPC3-positive HCC. Clin Cancer Res; 20(24); 6418–28. ©2014 AACR.

Purpose: Targeted inhibition of EGFR with the mAbs cetuximab or panitumumab is a valuable treatment for RAS wild-type colorectal cancers. The efficacy of EGFR blockade is limited by the emergence of acquired resistance often attributed to secondary KRAS mutations. Remarkably, tumor biopsies from resistant patients show that only a fraction of the resilient cells carry KRAS mutations. We hypothesized that a paracrine cross-talk driven by the resistant subpopulation may provide in trans protection of surrounding sensitive cells.

Experimental design: Conditioned medium assays and three-dimensional cocultures were used to assess paracrine networks between cetuximab-sensitive and -resistant cells. Production of EGFR ligands by cells sensitive to cetuximab and panitumumab was measured. The ability of recombinant EGFR ligands to protect sensitive cells from cetuximab was assessed. Biochemical activation of the EGFR signaling pathway was measured by Western blotting.

Results: Colorectal cancer cells sensitive to EGFR blockade can successfully grow despite cetuximab treatment when in the company of their resistant derivatives. Media conditioned by resistant cells protect sensitive parental cells from cetuximab. EGFR blockade triggers increased secretion of TGFα and amphiregulin. Increased secretion of ligands by resistant cells can sustain EGFR/ERK signaling in sensitive cells.

Conclusions: Colorectal cancer cells that develop resistance to cetuximab and panitumumab secrete TGFα and amphiregulin, which protect the surrounding cells from EGFR blockade. This paracrine protective mechanism might be therapeutically exploitable. Clin Cancer Res; 20(24); 6429–38. ©2014 AACR.

Purpose: Expression of inducible nitric oxide synthase (iNOS) in different cellular compartments may have divergent effects on immune function. We used a syngeneic tumor model to functionally characterize the role of iNOS in regulation of CD4+FOXP3+ regulatory T cells (Treg), and optimize the beneficial effects of iNOS inhibition on antitumor immunity.

Experimental Design: Wild-type (WT) or iNOS knockout mice bearing established MT-RET-1 melanoma were treated with the small-molecule iNOS inhibitor L-NIL and/or cyclophosphamide alone or in combination. The effect of iNOS inhibition or knockout on induction of Treg from mouse and human CD4+ T cells in ex vivo culture was determined in parallel in the presence or absence of TGFβ1-depleting antibodies, and TGFβ1 levels were assessed by ELISA.

Results: Whereas intratumoral myeloid-derived suppressor cells (MDSC) were suppressed by iNOS inhibition or knockout, systemic and intratumoral FOXP3+ Treg levels increased in tumor-bearing mice. iNOS inhibition or knockout similarly enhanced induction of Treg from activated cultured mouse splenocytes or purified human or mouse CD4+ T cells in a TGFβ1-dependent manner. Although either iNOS inhibition or Treg depletion with low-dose cyclophosphamide alone had little effect on growth of established MT-RET1 melanoma, combination treatment potently inhibited MDSC and Treg, boosted tumor-infiltrating CD8+ T-cell levels, and arrested tumor growth in an immune-dependent fashion.

Conclusions: iNOS expression in CD4+ T cells suppresses Treg induction by inhibiting TGFβ1 production. Our data suggest that iNOS expression has divergent effects on induction of myeloid and lymphoid-derived regulatory populations, and strongly support development of combinatorial treatment approaches that target these populations simultaneously. Clin Cancer Res; 20(24); 6439–51. ©2014 AACR.

Purpose: Immunosuppressive leukocytes and vasculature are important host cell components regulating tumor progression. Clever-1/Stabilin-1, a multifunctional scavenger and adhesion receptor, is constitutively present on a subset of type II macrophages and lymphatic endothelium, but its functional role in cancer is unknown.

Experimental Design: Here, we generated full Clever-1 knockout mice and cell-specific ones lacking Clever-1 either on macrophages or endothelium. We also used anti-Clever-1 antibody therapy to treat B16 melanoma and EL-4 lymphoma.

Results: Clever-1–deficient mice had smaller primary and metastatic tumors than wild-type (WT) controls. Growth of primary tumors, but not of metastases, was attenuated also in mice lacking Clever-1 selectively in macrophages or in vascular endothelium. Anti-Clever-1 antibody treatment inhibited tumor progression in WT mice. Both genetically and therapeutically induced absence of functional Clever-1 led to diminished numbers of immunosuppressive leukocyte types in tumors. Functionally Clever-1 mediated binding of immunosuppressive leukocytes to the intratumoral blood vessels aberrantly expressing Clever-1, and tumor cell traffic via the lymphatics. The antibody therapy did not aggravate autoimmunity.

Conclusion: This work identifies Clever-1 in type II macrophages and in tumor vasculature as a new immunosuppressive molecule in cancer. Our finding that Clever-1 supports binding of tumor-infiltrating lymphocytes to tumor vasculature increases our understanding of leukocyte immigration to tumors. The ability of anti-Clever-1 antibody treatment to attenuate tumor progression in WT mice in vivo is therapeutically relevant. Thus, Clever-1 may be an emerging new target for modulating immune evasion and lymphatic spread in cancer. Clin Cancer Res; 20(24); 6452–64. ©2014 AACR.

Purpose: Poly(ADP-ribose) polymerases (PARP) and the Mre11, Rad50, and Nbs1 (MRN) complex are key regulators of DNA repair, and have been recently shown to independently regulate telomere length. Sensitivity of cancers to PARPi is largely dependent on the BRCAness of the cells. Unfortunately, the vast majority of cancers are BRCA-proficient. In this study, therefore, we investigated whether a targeted molecular "hit" on the MRN complex, which is upstream of BRCA, can effectively sensitize BRCA-proficient head and neck squamous cell carcinoma (HNSCC) to PARP inhibitor (PARPi).

Experimental Design: Human HNSCC cell lines and a mouse model with HNSCC xenografts were used in this study. In vitro and in vivo studies were conducted to evaluate the effects and underlying mechanisms of dual molecular disruption of PARP and the MRN complex, using a pharmacologic inhibitor and a dominant-negative Nbs1 expression vector, respectively.

Results: Our findings demonstrate that downregulation of the MRN complex disrupts homologous recombination, and, when combined with PARPi, leads to accumulation of lethal DNA double-strand breaks. Moreover, we show that PARPi and MRN complex disruption induces significantly shortening telomere length. Together, our results demonstrate that dual disruption of these pathways causes significant cell death in BRCA-proficient tumor cells both in vitro and in vivo.

Conclusion: Our study, for the first time, elucidates a novel mechanism for MRN complex and PARP inhibition beyond DNA repair, demonstrating the feasibility of a dual disruption approach that extends the utility of PARPi to the treatment of BRCA-proficient cancers. Clin Cancer Res; 20(24); 6465–78. ©2014 AACR.

Purpose: Novel therapeutic regimens are needed to improve dismal outcomes associated with late-stage ovarian cancer. Oncolytic viruses are currently being tested in patients with ovarian cancer. Here, we tested the therapeutic efficacy of combining doxorubicin with 34.5ENVE, an oncolytic herpes simplex virus transcriptionally driven by a modified stem cell–specific nestin promoter, and encoding for antiangiogenic Vasculostatin-120 (VStat120) for use against progressive ovarian cancer.

Experimental Design: Antitumor efficacy of 34.5ENVE was assessed in ovarian cancer cell lines, mouse ascites–derived tumor cells, and primary patient ascites–derived tumor cells by standard MTT assay. The ability of conditioned medium derived from 34.5ENVE-infected ovarian cancer cells to inhibit endothelial cell migration was measured by a Transwell chamber assay. Scope of cytotoxic interactions between 34.5ENVE and doxorubicin were evaluated using Chou–Talalay synergy analysis. Viral replication, herpes simplex virus receptor expression, and apoptosis were evaluated. Efficacy of oncolytic viral therapy in combination with doxorubicin was evaluated in vivo in the murine xenograft model of human ovarian cancer.

Results: Treatment with 34.5ENVE reduced cell viability of ovarian cancer cell lines, and mouse ascites–derived and patient ascites–derived ovarian tumor cells. Conditioned media from tumor cells infected with 34.5ENVE reduced endothelial cell migration. When combined with doxorubicin, 34.5ENVE killed synergistically with a significant increase in caspase-3/7 activation, and an increase in sub-G1 population of cells. The combination of doxorubicin and 34.5ENVE significantly prolonged survival in nude mice bearing intraperitoneal ovarian cancer tumors.

Conclusions: This study indicates significant antitumor efficacy of 34.5ENVE alone, and in combination with doxorubicin against disseminated peritoneal ovarian cancer. Clin Cancer Res; 20(24); 6479–94. ©2014 AACR.

Purpose: Cervical cancer is mainly caused by infections of high-risk human papillomavirus (HR-HPV). Persistent expression of HR-HPV oncogenes E6 and E7 is implicated in malignant transformation. The aim was to provide proof-of-concept data to support use of zinc finger nucleases (ZFN) targeting HPV E7 to treat HPV-related cervical cancer.

Experimental Design: We designed and constructed ZFNs that could specifically recognize and cleave HPV16/18 E7 DNA. We tested the cleavage efficiency of selected ZFN16-E7-S2 and ZFN18-E7-S2 by using single-strand annealing (SSA) assay. Cell viability and colony formation assays were used to estimate the inhibition of cell growth that received treatments of ZFNs. Gene disruption of HPV E7 and downstream genes were examined by Western blotting. Cell apoptosis assay was used to test the specificity and efficiency of induction of HPV type-specific apoptosis. We also introduced xenograft formation assays to estimate the potential of inhibition of HPV-related disease.

Results: We found ZFN16-E7-S2 and ZFN18-E7-S2 disrupted HPV E7 oncogenes in HPV16/18–positive cervical cancer cells. Both ZFNs effectively led to inhibition of type-specific cervical cancer cell growth, and specifically induced apoptosis of corresponding HPV16- and HPV18-positive cervical cancer cell lines. ZFN16-E7-S2 and ZFN18-E7-S2 also repressed xenograft formation in vivo.

Conclusion: ZFNs targeting HPV16/18 E7 could effectively induce disruption of E7 oncogenes and lead to type-specific and efficient growth inhibition and apoptosis of HPV-positive cells. ZFNs targeting HPV16/18 E7 oncogenes could be used as novel therapeutic agents for the treatment of HPV-related cervical cancer. Clin Cancer Res; 20(24); 6495–503. ©2014 AACR.

Purpose: To investigate SGI-110 as a "chemosensitizer" in ovarian cancer and to assess its effects on tumor suppressor genes (TSG) and chemoresponsiveness-associated genes silenced by DNA methylation in ovarian cancer.

Experimental Design: Several ovarian cancer cell lines were used for in vitro and in vivo platinum resensitization studies. Changes in DNA methylation and expression levels of TSG and other cancer-related genes in response to SGI-110 were measured by pyrosequencing and RT-PCR.

Results: We demonstrate in vitro that SGI-110 resensitized a range of platinum-resistant ovarian cancer cells to cisplatin (CDDP) and induced significant demethylation and reexpression of TSG, differentiation-associated genes, and putative drivers of ovarian cancer cisplatin resistance. In vivo, SGI-110 alone or in combination with CDDP was well tolerated and induced antitumor effects in ovarian cancer xenografts. Pyrosequencing analyses confirmed that SGI-110 caused both global (LINE1) and gene-specific hypomethylation in vivo, including TSGs (RASSF1A), proposed drivers of ovarian cancer cisplatin resistance (MLH1 and ZIC1), differentiation-associated genes (HOXA10 and HOXA11), and transcription factors (STAT5B). Furthermore, DNA damage induced by CDDP in ovarian cancer cells was increased by SGI-110, as measured by inductively coupled plasma-mass spectrometry analysis of DNA adduct formation and repair of cisplatin-induced DNA damage.

Conclusions: These results strongly support further investigation of hypomethylating strategies in platinum-resistant ovarian cancer. Specifically, SGI-110 in combination with conventional and/or targeted therapeutics warrants further development in this setting. Clin Cancer Res; 20(24); 6504–16. ©2014 AACR.

Purpose: Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer that commonly harbors HER2 gene amplification. We investigated the effectiveness of HER2 inhibition using lapatinib and trastuzumab in vitro and in xenografts derived from USC cell lines and USC patient-derived xenografts.

Experimental Design: Immunohistochemistry and FISH were performed to assess HER2 expression in 42 primary USC specimens. ARK1, ARK2, and SPEC2 cell lines were treated with trastuzumab or lapatinib. Cohorts of mice harboring xenografts derived from ARK2 and SPEC2 cell lines and EnCa1 and EnCa2 primary human USC samples were treated with either vehicle, trastuzumab, lapatinib, or the combination of trastuzumab and lapatinib. Acute and chronic posttreatment tumor samples were assessed for downstream signaling alterations and examined for apoptosis and proliferation.

Results: HER2 gene amplification (24%) correlated significantly with HER2 protein overexpression (55%). All models were impervious to single-agent trastuzumab treatment. Lapatinib decreased in vitro proliferation of all cell lines and in vivo growth of HER2-amplified xenografts (ARK2, EnCa1). In addition, dual therapy with trastuzumab and lapatinib resulted in significant antitumor activity only in ARK2 and EnCa1 tumors. Dual HER2 therapy induced on target alteration of downstream MAPK and PI3K pathway mediators only in HER2-amplified models, and was associated with increased apoptosis and decreased proliferation.

Conclusions: Although trastuzumab alone did not impact USC growth, dual anti-HER2 therapy with lapatinib led to improved inhibition of tumor growth in HER2-amplified USC and may be a promising avenue for future investigation. Clin Cancer Res; 20(24); 6517–28. ©2014 AACR.

Purpose: To evaluate the relevance between lumican expression patterns and the clinical course of patients with pancreatic ductal adenocarcinoma (PDAC), and to investigate the role of lumican in PDAC progression.

Experimental Design: One hundred thirty-one patient tumors were chosen for tissue microarray staining, and Cox regression analysis was used to test the associations between lumican expression and clinical, pathologic, and oncologic outcomes in all patients. Primary PDAC cells and recombinant human lumican protein were used to establish a working model to mimic the in vivo interactions between stromal lumican and PDAC cells. Using this model, we tested the effects of lumican on EGFR signaling via Akt and hypoxia-inducible factor-1α (HIF1α) and its subsequent influence on glucose consumption, lactate production, intracellular ATP, and apoptotic cell death.

Results: Lumican was present in the stroma surrounding PDAC cells in roughly one-half of primary tumors and the direct xenografts. Patients with stromal lumican were associated with a profound reduction in metastatic recurrence after surgery and 3-fold longer survival than patients without stromal lumican. In PDAC cells, extracellular lumican reduced EGFR expression and phosphorylation through enhanced dimerization and internalization of EGFR and the resultant inhibition of Akt kinase activity. Lumican also reduced HIF1α expression and activity via Akt. PDAC cells with enhanced HIF1α activity were resistant to lumican-induced inhibition of glucose consumption, lactate production, intracellular ATP, and apoptosis.

Conclusions: There is a positive association between stromal lumican in primary PDAC tumors and prolonged survival after tumor resection. Lumican plays a restrictive role in EGFR-expressing pancreatic cancer progression. Clin Cancer Res; 20(24); 6529–40. ©2014 AACR.

Purpose: A crucial event in lung adenocarcinoma progression is the switch from an aerogenous spread toward an infiltrating tumor. Loss of RhoB expression has been suggested to be critical for lung cancer invasion. Here, we tested RhoB expression as a prognostic biomarker in non–small cell lung cancer (NSCLC) with a special focus on lepidic pattern.

Experimental Design: We analyzed RhoB expression using both IHC and RT-qPCR in two series of operated patients (n = 100 and 48, respectively) and in a series of advanced lepidic adenocarcinoma (n = 31) from different hospitals. Next, we examined the role of RhoB in lung cancer progression in transgenic mice that express inducible EGFRL858R crossed with Rhob null mice.

Results: We identified that loss of RhoB expression was strongly associated with worse survival (P = 0.0001) and progression-free survival (P < 0.001) in the first series. We then confirmed these results after multivariate analyses of the second series. In the series of adenocarcinoma with lepidic features issued from a clinical trial (IFCT-0401), we showed that loss of RhoB expression was associated with higher aggressiveness of stage IV. Finally, we showed that EGFRL858R/Rhob+/+ mice developed mainly diffuse lung tumors with a lepidic pattern, whereas EGFRL858R/Rhob+/– and EGFRL858R/Rhob–/– developed a greater number of tumors, and aggressive adenocarcinomas with invasive properties.

Conclusions: We showed that RhoB is not only a strong prognostic factor in NSCLC but it is also critical for the acquisition of an aggressive phenotype of adenocarcinoma. Clin Cancer Res; 20(24); 6541–50. ©2014 AACR.

Purpose: Targetable oncogenic alterations are detected more commonly in patients with non–small cell lung cancer (NSCLC) who never smoked cigarettes. For such patients, specific kinase inhibitors have emerged as effective clinical treatments. However, the currently known oncogenic alterations do not account for all never smokers who develop NSCLC. We sought to identify additional oncogenic alterations from patients with NSCLC to define additional treatment options.

Experimental Design: We analyzed 576 lung adenocarcinomas from patients of Asian and Caucasian ethnicity. We identified a subset of cancers that did not harbor any known oncogenic alteration. We performed targeted next-generation sequencing (NGS) assay on 24 patients from this set with >75% tumor cell content.

Results: EGFR mutations were the most common oncogenic alteration from both Asian (53%) and Caucasian (41.6%) patients. No known oncogenic alterations were present in 25.7% of Asian and 31% of Caucasian tumor specimens. We identified a FGFR3–TACC3 fusion event in one of 24 patients from this subset using targeted NGS. Two additional patients harboring FGFR3–TACC3 were identified by screening our entire cohort (overall prevalence, 0.5%). Expression of FGFR3–TACC3 led to IL3 independent growth in Ba/F3 cells. These cells were sensitive to pan-fibroblast growth factor receptor (pan-FGFR) inhibitors but not the epidermal growth factor (EGFR) inhibitor gefitinib.

Conclusions: FGFR3–TACC3 rearrangements occur in a subset of patients with lung adenocarcinoma. Such patients should be considered for clinical trials featuring FGFR inhibitors. Clin Cancer Res; 20(24); 6551–8. ©2014 AACR.

Purpose: MicroRNAs in the delta-like 1 homolog–deiodinase, iodothyronine 3 (DLK1-DIO3) cluster have been shown to be critical for embryonic development and epithelial to mesenchymal transition (EMT). DLK1-DIO3 cluster miRNAs are elevated in the serum of patients with metastatic cancer. However, the biologic functions of these miRNAs in the EMT and metastasis of cancer cells are poorly understood. We previously demonstrated the oncogenic and metastatic role of miR-409-3p/5p, a member of this cluster, in prostate cancer. In this study, we defined the role of miR-154* and miR-379, two key members of this cluster, in prostate cancer progression and bone metastasis in both cell line models and clinical specimens.

Experimental Design: Genetic manipulation of miR-154* and miR-379 was performed to determine their role in tumor growth, EMT, and bone metastasis in mouse models. We determined the expression of miR-154* in prostate cancer clinical samples and bone metastasis samples using in situ hybridization and quantum dot labeling.

Results: Elevated expression of miR-154* and miR-379 was observed in bone metastatic prostate cancer cell lines and tissues, and miR-379 expression correlated with progression-free survival of patients with prostate cancer. Intracardiac inoculation (to mimic systemic dissemination) of miR-154* inhibitor-treated bone metastatic ARCaPM prostate cancer cells in mice led to decreased bone metastasis and increased survival.

Conclusion: miR-154* and miR-379 play important roles in prostate cancer biology by facilitating tumor growth, EMT, and bone metastasis. This finding has particular translational importance because miRNAs in the DLK1-DIO3 cluster can be attractive biomarkers and possible therapeutic targets to treat bone metastatic prostate cancer. Clin Cancer Res; 20(24); 6559–69. ©2014 AACR.

Purpose: To investigate the molecular events associated with the activation of androgen receptor (AR) as a potential therapeutic target in patients with salivary duct carcinoma (SDC).

Experimental Design: Comprehensive molecular and expression analysis of the AR gene in 35 tumor specimens (20 males and 15 females) and cell lines derived from SDC using Western blotting and RT-PCR, FISH analysis, and DNA sequencing was conducted. In vitro and in vivo animal studies were also performed.

Results: AR expression was detected in 70% of the tumors and was mainly nuclear and homogenous in both male and female SDCs, although variable cytoplasmic and/or nuclear localization was also found. We report the identification of ligand-independent AR splice variants, mutations, and extra AR gene copy in primary untreated SDC tumors. In contrast to prostate cancer, no AR gene amplification was observed. In vitro knockdown of AR in a female derived SDC cell line revealed marked growth inhibition in culture and in vivo androgen-independent tumor growth.

Conclusions: Our study provides new detailed information on the molecular and structural alterations associated with AR gene activation in SDC and sheds more light on the putative functional role of AR in SDC cells. On the basis of these data, we propose that patients with SDC (male and female) can be stratified for hormone-based therapy in future clinical trials. Clin Cancer Res; 20(24); 6570–81. ©2014 AACR.

Purpose: Aggressive cutaneous squamous cell carcinoma (cSCC) is often a disfiguring and lethal disease. Very little is currently known about the mutations that drive aggressive cSCC.

Experimental Design: Whole-exome sequencing was performed on 39 cases of aggressive cSCC to identify driver genes and novel therapeutic targets. Significantly, mutated genes were identified with MutSig or complementary methods developed to specifically identify candidate tumor suppressors based upon their inactivating mutation bias.

Results: Despite the very high-mutational background caused by UV exposure, 23 candidate drivers were identified, including the well-known cancer-associated genes TP53, CDKN2A, NOTCH1, AJUBA, HRAS, CASP8, FAT1, and KMT2C (MLL3). Three novel candidate tumor suppressors with putative links to cancer or differentiation, NOTCH2, PARD3, and RASA1, were also identified as possible drivers in cSCC. KMT2C mutations were associated with poor outcome and increased bone invasion.

Conclusions: The mutational spectrum of cSCC is similar to that of head and neck squamous cell carcinoma and dominated by tumor-suppressor genes. These results improve the foundation for understanding this disease and should aid in identifying and treating aggressive cSCC. Clin Cancer Res; 20(24); 6582–92. ©2014 AACR.

Purpose: CD8+ T lymphocytes can kill autologous melanoma cells, but their activity is impaired when poorly immunogenic tumor phenotypes evolve in the course of disease progression. Here, we analyzed three consecutive melanoma lesions obtained within one year of developing stage IV disease for their recognition by autologous T cells.

Experimental Design: One skin (Ma-Mel-48a) and two lymph node (Ma-Mel-48b, Ma-Mel-48c) metastases were analyzed for T-cell infiltration. Melanoma cell lines established from the respective lesions were characterized, determining the T-cell–stimulatory capacity, expression of surface molecules involved in T-cell activation, and specific genetic alterations affecting the tumor–T-cell interaction.

Results: Metastases Ma-Mel-48a and Ma-Mel-48b, in contrast with Ma-Mel-48c, were infiltrated by T cells. The T-cell–stimulatory capacity was found to be strong for Ma-Mel-48a, lower for Ma-Mel-48b, and completely abrogated for Ma-Mel-48c cells. The latter proved to be HLA class I–negative due to an inactivating mutation in one allele of the beta-2-microglobulin (B2M) gene and concomitant loss of the other allele by a deletion on chromosome 15q. The same deletion was already present in Ma-Mel-48a and Ma-Mel-48b cells, pointing to an early acquired genetic event predisposing to development of β2m deficiency. Notably, the same chronology of genetic alterations was also observed in a second β2m-deficient melanoma model.

Conclusion: Our study reveals a progressive loss in melanoma immunogenicity during the course of metastatic disease. The genetic evolvement of T-cell resistance suggests screening tumors for genetic alterations affecting immunogenicity could be clinically relevant in terms of predicting patient responses to T-cell–based immunotherapy. Clin Cancer Res; 20(24); 6593–604. ©2014 AACR.

Purpose: Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators.

Experimental Design: Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients.

Results: We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22–0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage.

Conclusion: Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. Clin Cancer Res; 20(24); 6605–17. ©2014 AACR.

Purpose: Low-grade serous ovarian carcinomas (LGSC) are Ras pathway-mutated, TP53 wild-type, and frequently associated with borderline tumors. Patients with LGSCs respond poorly to platinum-based chemotherapy and may benefit from pathway-targeted agents. High-grade serous carcinomas (HGSC) are TP53-mutated and are thought to be rarely associated with borderline tumors. We sought to determine whether borderline histology associated with grade 2 or 3 carcinoma was an indicator of Ras mutation, and we explored the molecular relationship between coexisting invasive and borderline histologies.

Experimental Design: We reviewed >1,200 patients and identified 102 serous carcinomas with adjacent borderline regions for analyses, including candidate mutation screening, copy number, and gene expression profiling.

Results: We found a similar frequency of low, moderate, and high-grade carcinomas with coexisting borderline histology. BRAF/KRAS alterations were common in LGSC; however, we also found recurrent NRAS mutations. Whereas borderline tumors harbored BRAF/KRAS mutations, NRAS mutations were restricted to carcinomas, representing the first example of a Ras oncogene with an obligatory association with invasive serous cancer. Coexisting borderline and invasive components showed nearly identical genomic profiles. Grade 2 cases with coexisting borderline included tumors with molecular features of LGSC, whereas others were typical of HGSC. However, all grade 3 carcinomas with coexisting borderline histology were molecularly indistinguishable from typical HGSC.

Conclusion: Our findings suggest that NRAS is an oncogenic driver in serous ovarian tumors. We demonstrate that borderline histology is an unreliable predictor of Ras pathway aberration and underscore an important role for molecular classification in identifying patients that may benefit from targeted agents. Clin Cancer Res; 20(24); 6618–30. ©2014 AACR.