• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources


Genes & Development

Genes & Development RSS feed -- current issue
Genes & Development

Two Parkinson's disease (PD)-associated proteins, the mitochondrial kinase PINK1 and the E3-ubiquitin (Ub) ligase PARKIN, are central to mitochondrial quality control. In this pathway, PINK1 accumulates on defective mitochondria, eliciting the translocation of PARKIN from the cytosol to mediate the clearance of damaged mitochondria via autophagy (mitophagy). Throughout the different stages of mitophagy, post-translational modifications (PTMs) are critical for the regulation of PINK1 and PARKIN activity and function. Indeed, activation and recruitment of PARKIN onto damaged mitochondria involves PINK1-mediated phosphorylation of both PARKIN and Ub. Through a stepwise cascade, PARKIN is converted from an autoinhibited enzyme into an active phospho-Ub-dependent E3 ligase. Upon activation, PARKIN ubiquitinates itself in concert with many different mitochondrial substrates. The Ub conjugates attached to these substrates can in turn be phosphorylated by PINK1, which triggers further cycles of PARKIN recruitment and activation. This feed-forward amplification loop regulates both PARKIN activity and mitophagy. However, the precise steps and sequence of PTMs in this cascade are only now being uncovered. For instance, the Ub conjugates assembled by PARKIN consist predominantly of noncanonical K6-linked Ub chains. Moreover, these modifications are reversible and can be disassembled by deubiquitinating enzymes (DUBs), including Ub-specific protease 8 (USP8), USP15, and USP30. However, PINK1-mediated phosphorylation of Ub can impede the activity of these DUBs, adding a new layer of complexity to the regulation of PARKIN-mediated mitophagy by PTMs. It is therefore evident that further insight into how PTMs regulate the PINK1–PARKIN pathway will be critical for our understanding of mitochondrial quality control.

Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.

Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.

Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are not dependent on HIF1α or HIF2α; however, they are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Furthermore, this response is conserved at a syntenic region in zebrafish cells. Regions with site-specific copy gain are also enriched for amplifications in hypoxic primary tumors. These tumors exhibited amplification and overexpression of the drug resistance gene CKS1B, which we recapitulated in hypoxic breast cancer cells. Our results demonstrate that hypoxia provides a biological stimulus to create transient site-specific copy alterations that could result in heterogeneity within tumors and cell populations. These findings have major implications in our understanding of copy number heterogeneity and the emergence of drug resistance genes in cancer.

MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells.

More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities.

Specific recognition of centromere-specific histone variant CENP-A-containing chromatin by CENP-N is an essential process in the assembly of the kinetochore complex at centromeres prior to mammalian cell division. However, the mechanisms of CENP-N recruitment to centromeres/kinetochores remain unknown. Here, we show that a CENP-A-specific RG loop (Arg80/Gly81) plays an essential and dual regulatory role in this process. The RG loop assists the formation of a compact "ladder-like" structure of CENP-A chromatin, concealing the loop and thus impairing its role in recruiting CENP-N. Upon G1/S-phase transition, however, centromeric chromatin switches from the compact to an open state, enabling the now exposed RG loop to recruit CENP-N prior to cell division. Our results provide the first insights into the mechanisms by which the recruitment of CENP-N is regulated by the structural transitions between compaction and relaxation of centromeric chromatin during the cell cycle.

Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt pathway to promote invasive intestinal adenocarcinoma in murine models. When LIN28 alone is induced genetically, half of the resulting tumors harbor Ctnnb1 (β-catenin) mutation. When overexpressed in ApcMin/+ mice, LIN28 accelerates tumor formation and enhances proliferation and invasiveness. In conditional genetic models, enforced expression of a LIN28-resistant form of the let-7 microRNA reduces LIN28-induced tumor burden, while silencing of LIN28 expression reduces tumor volume and increases tumor differentiation, indicating that LIN28 contributes to tumor maintenance. We detected aberrant expression of LIN28A and/or LIN28B in 38% of a large series of human CRC samples (n = 595), where LIN28 expression levels were associated with invasive tumor growth. Our late-stage CRC murine models and analysis of primary human tumors demonstrate prominent roles for both LIN28 paralogs in promoting CRC growth and progression and implicate the LIN28/let-7 pathway as a therapeutic target.

The assembly of a nervous system requires the extension of axons and dendrites to specific regions where they are matched with appropriate synaptic targets. Although the cues that guide long-range outgrowth have been characterized extensively, additional mechanisms are required to explain short-range guidance in neural development. Using a complementary combination of time-lapse imaging by fluorescence confocal microscopy and serial block-face electron microscopy, we identified a novel type of presynaptic projection that participates in the assembly of the vertebrate nervous system. Synapse formation by each hair cell of the zebrafish's lateral line occurs during a particular interval after the cell's birth. During the same period, projections emerge from the cellular soma, extending toward a specific subpopulation of mature hair cells and interacting with polarity-specific afferent nerve terminals. The terminals then extend along the projections to reach appropriately matched presynaptic sites, after which the projections recede. Our results suggest that presynaptic projections act as transient scaffolds for short-range partner matching, a mechanism that may occur elsewhere in the nervous system.