• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center
 

Member Resources

Publications

Human Molecular Genetics

Human Molecular Genetics - RSS feed of current issue




Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors’, we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D.


Mutations in glucokinase (GCK) cause a spectrum of glycemic disorders. Heterozygous loss-of-function mutations cause mild fasting hyperglycemia irrespective of mutation severity due to compensation from the unaffected allele. Conversely, homozygous loss-of-function mutations cause permanent neonatal diabetes requiring lifelong insulin treatment. This study aimed to determine the relationship between in vitro mutation severity and clinical phenotype in a large international case series of patients with homozygous GCK mutations. Clinical characteristics for 30 patients with diabetes due to homozygous GCK mutations (19 unique mutations, including 16 missense) were compiled and assigned a clinical severity grade (CSG) based on birth weight and age at diagnosis. The majority (28 of 30) of subjects were diagnosed before 9 months, with the remaining two at 9 and 15 years. These are the first two cases of a homozygous GCK mutation diagnosed outside infancy. Recombinant mutant GCK proteins were analyzed for kinetic and thermostability characteristics and assigned a relative activity index (RAI) or relative stability index (RSI) value. Six of 16 missense mutations exhibited severe kinetic defects (RAI ≤ 0.01). There was no correlation between CSG and RAI (r2 = 0.05, P = 0.39), indicating that kinetics alone did not explain the phenotype. Eighty percent of the remaining mutations showed reduced thermostability, the exceptions being the two later-onset mutations which exhibited increased thermostability. Comparison of CSG with RSI detected a highly significant correlation (r2 = 0.74, P = 0.002). We report the largest case series of homozygous GCK mutations to date and demonstrate that they can cause childhood-onset diabetes, with protein instability being the major determinant of mutation severity.


Familial clustering and presumed genetic risk for type 2 diabetic (T2D) and non-diabetic end-stage kidney disease (ESKD) appear strong in African Americans. Examination of exome sequencing data in African American T2D-ESKD cases and non-diabetic non-nephropathy controls identified two low-frequency variants in the RREB1 gene, a repressor of the angiotensinogen (AGT) gene previously associated with kidney function, as being associated with T2D-ESKD: rs9379084 (P = 0.00087, OR = 0.26; D1171N) and rs41302867 (P = 0.00078, OR = 0.21; splice site variant). Rs41302867 replicated association in an independent sample of African Americans with T2D-ESKD [rs41302867 P = 0.033 (OR = 0.50)], and a trend towards rs9379084 association was observed (P = 0.070). In European Americans with T2D-ESKD compared with European American population based controls, both RREB1 variants replicated association [rs9379084 P = 1.67 x 10–4 (OR = 0.54) and rs41302867 P = 0.013 (OR = 0.69)]. Rs9379084 was not associated with non-T2D-ESKD or T2D in African Americans (P = 0.55 and P = 0.37, respectively), but was associated with T2D in European Americans (P = 0.014, OR = 0.65). In African Americans, rs41302867 was associated with non-T2D-ESKD [P = 0.036 (OR = 0.54)] and hypertension attributed ESKD [H-ESKD, P = 0.029 (OR = 0.50)]. A meta-analysis combining African American and European American T2D-ESKD data revealed P = 3.52 x 10–7 and 3.70 x 10–5 for rs9379084 and rs41302867 association, respectfully. A locus-wide analysis evaluating putatively functional SNPs revealed several nominal associations with T2D-ESKD, non-T2D-ESKD and T2D in African and European Americans. RREB1 is a large, complex gene which codes a multidomain zinc finger binding protein and transcription factor. We posit that variants in RREB1 modulate seemingly disparate phenotypes (i.e. T2D, T2D-ESKD and non-T2D-ESKD) through altered activity resulting from splice site and missense variants.


Immunodeficiency, centromeric instability and facial anomalies type I (ICF1) syndrome is a rare genetic disease caused by mutations in DNA methyltransferase (DNMT) 3B, a de novo DNA methyltransferase. However, the molecular basis of how DNMT3B deficiency leads to ICF1 pathogenesis is unclear. Induced pluripotent stem cell (iPSC) technology facilitates the study of early human developmental diseases via facile in vitro paradigms. Here, we generate iPSCs from ICF Type 1 syndrome patient fibroblasts followed by directed differentiation of ICF1-iPSCs to mesenchymal stem cells (MSCs). By performing genome-scale bisulfite sequencing, we find that DNMT3B-deficient iPSCs exhibit global loss of non-CG methylation and select CG hypomethylation at gene promoters and enhancers. Further unbiased scanning of ICF1-iPSC methylomes also identifies large megabase regions of CG hypomethylation typically localized in centromeric and subtelomeric regions. RNA sequencing of ICF1 and control iPSCs reveals abnormal gene expression in ICF1-iPSCs relevant to ICF syndrome phenotypes, some directly associated with promoter or enhancer hypomethylation. Upon differentiation of ICF1 iPSCs to MSCs, we find virtually all CG hypomethylated regions remained hypomethylated when compared with either wild-type iPSC-derived MSCs or primary bone-marrow MSCs. Collectively, our results show specific methylome and transcriptome defects in both ICF1-iPSCs and differentiated somatic cell lineages, providing a valuable stem cell system for further in vitro study of the molecular pathogenesis of ICF1 syndrome. GEO accession number: GSE46030.


It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.


Gain-of-function mutations in the olfactomedin domain of the MYOC gene facilitate the toxic accumulation of amyloid-containing myocilin aggregates, hastening the onset of the prevalent ocular disorder primary open-angle glaucoma. Aggregation of wild-type myocilin has been reported in other glaucoma subtypes, suggesting broader relevance of misfolded myocilin across the disease spectrum, but the absence of myocilin does not cause disease. Thus, strategies aimed at eliminating myocilin could be therapeutically relevant for glaucoma. Here, a novel and selective Grp94 inhibitor reduced the levels of several mutant myocilin proteins as well as wild-type myocilin when forced to misfold in cells. This inhibitor rescued mutant myocilin toxicity in primary human trabecular meshwork cells. Mechanistically, in vitro kinetics studies demonstrate that Grp94 recognizes on-pathway aggregates of the myocilin olfactomedin domain (myoc-OLF), accelerates rates of aggregation and co-precipitates with myoc-OLF. These results indicate that aberrant myocilin quaternary structure drives Grp94 recognition, rather than peptide motifs exposed by unfolded protein. Inhibition of Grp94 ameliorates the effects of Grp94-accelerated myoc-OLF aggregation, and Grp94 remains in solution. In cells, when wild-type myocilin is driven to misfold and aggregate, it becomes a client of Grp94 and sensitive to Grp94 inhibition. Taken together, the interaction of Grp94 with myocilin aggregates can be manipulated by cellular environment and genetics; this process can be exploited with Grp94 inhibitors to promote the clearance of toxic forms of myocilin.


Williams–Beuren syndrome is a developmental multisystemic disorder caused by a recurrent 1.55–1.83 Mb heterozygous deletion on human chromosome band 7q11.23. Through chromosomal engineering with the cre-loxP system, we have generated mice with an almost complete deletion (CD) of the conserved syntenic region on chromosome 5G2. Heterozygous CD mice were viable, fertile and had a normal lifespan, while homozygotes were early embryonic lethal. Transcript levels of most deleted genes were reduced 50% in several tissues, consistent with gene dosage. Heterozygous mutant mice showed postnatal growth delay with reduced body weight and craniofacial abnormalities such as small mandible. The cardiovascular phenotype was only manifested with borderline hypertension, mildly increased arterial wall thickness and cardiac hypertrophy. The neurobehavioral phenotype revealed impairments in motor coordination, increased startle response to acoustic stimuli and hypersociability. Mutant mice showed a general reduction in brain weight. Cellular and histological abnormalities were present in the amygdala, cortex and hippocampus, including increased proportion of immature neurons. In summary, these mice recapitulate most crucial phenotypes of the human disorder, provide novel insights into the pathophysiological mechanisms of the disease such as the neural substrates of the behavioral manifestations, and will be valuable to evaluate novel therapeutic approaches.


Disturbances of lipid metabolism have been implicated in psychiatric illnesses. We previously reported an association between the gene for fatty acid binding protein 7 (FABP7) and schizophrenia. Furthermore, we identified and reported several rare non-synonymous polymorphisms of the brain-expressed genes FABP3, FABP5 and FABP7 from schizophrenia and autism spectrum disorder (ASD), diseases known to part share genetic architecture. Here, we conducted further studies to better understand the contribution these genes make to the pathogenesis of schizophrenia and ASD. In postmortem brains, we detected altered mRNA expression levels of FABP5 in schizophrenia, and of FABP7 in ASD and altered FABP5 in peripheral lymphocytes. Using a patient cohort, comprehensive mutation screening identified six missense and two frameshift variants from the three FABP genes. The two frameshift proteins, FABP3 E132fs and FABP7 N80fs, formed cellular aggregates and were unstable when expressed in cultured cells. The four missense mutants with predicted possible damaging outcomes showed no changes in intracellular localization. Examining ligand binding properties, FABP7 S86G and FABP7 V126L lost their preference for docosahexaenoic acid to linoleic acid. Finally, mice deficient in Fabp3, Fabp5 and Fabp7 were evaluated in a systematic behavioral test battery. The Fabp3 knockout (KO) mice showed decreased social memory and novelty seeking, and Fabp7 KO mice displayed hyperactive and anxiety-related phenotypes, while Fabp5 KO mice showed no apparent phenotypes. In conclusion, disturbances in brain-expressed FABPs could represent an underlying disease mechanism in a proportion of schizophrenia and ASD sufferers.


Normally, sonic hedgehog (Shh) signaling induces high levels of Patched 1 (Ptc1) and its associated transcription factor Gli1 with genesis of specific neuronal progeny. But their roles in the neural stem cells (NSCs), including glial precursor cells (GPCs), of Alzheimer's disease (AD) are unclear. Here, we show that Ptc1 and Gli1 are significantly deficits in the hippocampus of an aged AD transgenic mouse mode, whereas these two molecules are highly elevated at young ages. Our similar findings in autopsied AD brains validate the discovery in AD mouse models. To examine whether Aβ peptides, which are a main component of the amyloid plaques in AD brains, affected Ptc1-Gli1 signaling, we treated GPCs with Aβ peptides, we found that high dose of Aβ1–42 but not Aβ1–40 significantly decreased Ptc1-Gli1, while Shh itself was elevated in hippocampal NSCs/GPCs. Furthermore, we found that deficits of Ptc1-Gli1 signaling induced NSCs/GPCs into asymmetric division, which results in an increase in the number of dividing cells including transit-amplifying cells and neuroblasts. These precursor cells commit to apoptosis-like death under the toxic conditions. By this way, adult neural precursor cell pool is exhausted and defective neurogenesis happens in AD brains. Our findings suggest that Ptc1-Gli1 signaling deregulation resulting abnormal loss of GPCs may contribute to a cognition decline in AD brains. The novel findings elucidate a new molecular mechanism of adult NSCs/GPCs on neurogenesis and demonstrate a regulatory role for Ptc1-Gli1 in adult neural circuit integrity of the brain.


Brain bioenergetic function declines in some neurodegenerative diseases, this may influence other pathologies and administering bioenergetic intermediates could have therapeutic value. To test how one intermediate, oxaloacetate (OAA) affects brain bioenergetics, insulin signaling, inflammation and neurogenesis, we administered intraperitoneal OAA, 1–2 g/kg once per day for 1–2 weeks, to C57Bl/6 mice. OAA altered levels, distributions or post-translational modifications of mRNA and proteins (proliferator-activated receptor-gamma coactivator 1α, PGC1 related co-activator, nuclear respiratory factor 1, transcription factor A of the mitochondria, cytochrome oxidase subunit 4 isoform 1, cAMP-response element binding, p38 MAPK and adenosine monophosphate-activated protein kinase) in ways that should promote mitochondrial biogenesis. OAA increased Akt, mammalian target of rapamycin and P70S6K phosphorylation. OAA lowered nuclear factor B nucleus-to-cytoplasm ratios and CCL11 mRNA. Hippocampal vascular endothelial growth factor mRNA, doublecortin mRNA, doublecortin protein, doublecortin-positive neuron counts and neurite length increased in OAA-treated mice. 1H-MRS showed OAA increased brain lactate, GABA and glutathione thereby demonstrating metabolic changes are detectable in vivo. In mice, OAA promotes brain mitochondrial biogenesis, activates the insulin signaling pathway, reduces neuroinflammation and activates hippocampal neurogenesis.


The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid β-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in β-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.


Cardio-facio-cutaneous (CFC) syndrome is one of the ‘RASopathies’, a group of phenotypically overlapping syndromes caused by germline mutations that encode components of the RAS–MAPK pathway. Germline mutations in BRAF cause CFC syndrome, which is characterized by heart defects, distinctive facial features and ectodermal abnormalities. To define the pathogenesis and to develop a potential therapeutic approach in CFC syndrome, we here generated new knockin mice (here BrafQ241R/+) expressing the Braf Q241R mutation, which corresponds to the most frequent mutation in CFC syndrome, Q257R. BrafQ241R/+ mice manifested embryonic/neonatal lethality, showing liver necrosis, edema and craniofacial abnormalities. Histological analysis revealed multiple heart defects, including cardiomegaly, enlarged cardiac valves, ventricular noncompaction and ventricular septal defects. BrafQ241R/+ embryos also showed massively distended jugular lymphatic sacs and subcutaneous lymphatic vessels, demonstrating lymphatic defects in RASopathy knockin mice for the first time. Prenatal treatment with a MEK inhibitor, PD0325901, rescued the embryonic lethality with amelioration of craniofacial abnormalities and edema in BrafQ241R/+ embryos. Unexpectedly, one surviving pup was obtained after treatment with a histone 3 demethylase inhibitor, GSK-J4, or NCDM-32b. Combination treatment with PD0325901 and GSK-J4 further increased the rescue from embryonic lethality, ameliorating enlarged cardiac valves. These results suggest that our new Braf knockin mice recapitulate major features of RASopathies and that epigenetic modulation as well as the inhibition of the ERK pathway will be a potential therapeutic strategy for the treatment of CFC syndrome.


Parkinson's disease (PD), the most common degenerative movement disorder, is caused by a preferential loss of midbrain dopaminergic (mDA) neurons. Both α-synuclein (α-syn) missense and multiplication mutations have been linked to PD. However, the underlying intracellular signalling transduction pathways of α-syn-mediated mDA neurodegeneration remain elusive. Here, we show that transgenic expression of PD-related human α-syn A53T missense mutation promoted calcineurin (CN) activity and the subsequent nuclear translocation of nuclear factor of activated T cells (NFATs) in mDA neurons. α-syn enhanced the phosphatase activity of CN in both cell-free assays and cell lines transfected with either human wild-type or A53T α-syn. Furthermore, overexpression of α-syn A53T mutation significantly increased the CN-dependent nuclear import of NFATc3 in the mDA neurons of transgenic mice. More importantly, a pharmacological inhibition of CN by cyclosporine A (CsA) ameliorated the α-syn-induced loss of mDA neurons. These findings demonstrate an active involvement of CN- and NFAT-mediated signalling pathway in α-syn-mediated degeneration of mDA neurons in PD.


The FMR1 gene is subject to repeat mediated-gene silencing when the CGG-repeat tract in the 5' UTR exceeds 200 repeat units. This results in Fragile X syndrome, the most common heritable cause of intellectual disability and a major cause of autism spectrum disorders. The mechanism of gene silencing is not fully understood, and efforts to reverse this gene silencing have had limited success. Here, we show that the level of trimethylation of histone H3 on lysine 27, a hallmark of the activity of EZH2, a component of repressive Polycomb Group (PcG) complexes like PRC2, is increased on reactivation of the silenced allele by either the DNA demethylating agent 5-azadeoxycytidine or the SIRT1 inhibitor splitomicin. The level of H3K27me3 increases and decreases in parallel with the FMR1 mRNA level. Furthermore, reducing the levels of the FMR1 mRNA reduces the accumulation of H3K27me3. This suggests a model for FMR1 gene silencing in which the FMR1 mRNA generated from the reactivated allele acts in cis to repress its own transcription via the recruitment of PcG complexes to the FMR1 locus.


Lethal congenital contracture syndrome (LCCS) is a lethal autosomal recessive form of arthrogryposis multiplex congenita (AMC). LCCS is genetically heterogeneous with mutations in five genes identified to date, all with a role in the innervation or contractile apparatus of skeletal muscles. In a consanguineous Saudi family with multiple stillbirths presenting with LCCS, we excluded linkage to all known LCCS loci and combined autozygome analysis and whole-exome sequencing to identify a novel homozygous variant in ZBTB42, which had been shown to be enriched in skeletal muscles, especially at the neuromuscular junction. Knockdown experiments of zbtb42 in zebrafish consistently resulted in grossly abnormal skeletal muscle development and myofibrillar disorganization at the microscopic level. This severe muscular phenotype is successfully rescued with overexpression of the human wild-type ZBTB42 gene, but not with the mutant form of ZBTB42 that models the human missense change. Our data assign a novel muscular developmental phenotype to ZBTB42 in vertebrates and establish a new LCCS6 type caused by ZBTB42 mutation.


Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110–C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease.


Adult body height is a quantitative trait for which genome-wide association studies (GWAS) have identified numerous loci, primarily in European populations. These loci, comprising common variants, explain <10% of the phenotypic variance in height. We searched for novel associations between height and common (minor allele frequency, MAF ≥5%) or infrequent (0.5% < MAF < 5%) variants across the exome in African Americans. Using a reference panel of 1692 African Americans and 471 Europeans from the National Heart, Lung, and Blood Institute's (NHLBI) Exome Sequencing Project (ESP), we imputed whole-exome sequence data into 13 719 African Americans with existing array-based GWAS data (discovery). Variants achieving a height-association threshold of P < 5E–06 in the imputed dataset were followed up in an independent sample of 1989 African Americans with whole-exome sequence data (replication). We used P < 2.5E–07 (=0.05/196 779 variants) to define statistically significant associations in meta-analyses combining the discovery and replication sets (N = 15 708). We discovered and replicated three independent loci for association: 5p13.3/C5orf22/rs17410035 (MAF = 0.10, β = 0.64 cm, P = 8.3E–08), 13q14.2/SPRYD7/rs114089985 (MAF = 0.03, β = 1.46 cm, P = 4.8E–10) and 17q23.3/GH2/rs2006123 (MAF = 0.30; β = 0.47 cm; P = 4.7E–09). Conditional analyses suggested 5p13.3 (C5orf22/rs17410035) and 13q14.2 (SPRYD7/rs114089985) may harbor novel height alleles independent of previous GWAS-identified variants (r2 with GWAS loci <0.01); whereas 17q23.3/GH2/rs2006123 was correlated with GWAS-identified variants in European and African populations. Notably, 13q14.2/rs114089985 is infrequent in African Americans (MAF = 3%), extremely rare in European Americans (MAF = 0.03%), and monomorphic in Asian populations, suggesting it may be an African-American-specific height allele. Our findings demonstrate that whole-exome imputation of sequence variants can identify low-frequency variants and discover novel variants in non-European populations.


Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 x 10–39; Region 3: rs2853677, P = 3.30 x 10–36 and PConditional = 2.36 x 10–8; Region 4: rs2736098, P = 3.87 x 10–12 and PConditional = 5.19 x 10–6, Region 5: rs13172201, P = 0.041 and PConditional = 2.04 x 10–6; and Region 6: rs10069690, P = 7.49 x 10–15 and PConditional = 5.35 x 10–7) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 x 10–18 and PConditional = 7.06 x 10–16). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.


We report a genome-wide association study (GWAS) and admixture analysis of glaucoma in 12 008 African-American and Hispanic women (age 50–79 years) from the Women's Health Initiative (WHI). Although GWAS of glaucoma have been conducted on several populations, this is the first to look at glaucoma in individuals of African-American and Hispanic race/ethnicity. Prevalent and incident glaucoma was determined by self-report from study questionnaires administered at baseline (1993–1998) and annually through 2005. For African Americans, there was a total of 658 prevalent cases, 1062 incident cases and 6067 individuals who never progressed to glaucoma. For our replication cohort, we used the WHI Hispanics, including 153 prevalent cases, 336 incident cases and 2685 non-cases. We found an association of African ancestry with glaucoma incidence in African Americans (hazards ratio 1.62, 95% CI 1.023–2.56, P = 0.038) and in Hispanics (hazards ratio 3.21, 95% CI 1.32–7.80, P = 0.011). Although we found that no previously identified glaucoma SNPs replicated in either the WHI African Americans or Hispanics, a risk score combining all previously reported hits was significant in African-American prevalent cases (P = 0.0046), and was in the expected direction in the incident cases, as well as in the Hispanic incident cases. Additionally, after imputing to 1000 Genomes, two less common independent SNPs were suggestive in African Americans, but had too low of an allele frequency in Hispanics to test for replication. These results suggest the possibility of a distinct genetic architecture underlying glaucoma in individuals of African ancestry.


Cerebrospinal fluid amyloid-beta 1–42 (Aβ1–42) and phosphorylated Tau at position 181 (pTau181) are biomarkers of Alzheimer's disease (AD). We performed an analysis and meta-analysis of genome-wide association study data on Aβ1–42 and pTau181 in AD dementia patients followed by independent replication. An association was found between Aβ1–42 level and a single-nucleotide polymorphism in SUCLG2 (rs62256378) (P = 2.5x10–12). An interaction between APOE genotype and rs62256378 was detected (P = 9.5 x 10–5), with the strongest effect being observed in APOE-4 noncarriers. Clinically, rs62256378 was associated with rate of cognitive decline in AD dementia patients (P = 3.1 x 10–3). Functional microglia experiments showed that SUCLG2 was involved in clearance of Aβ1–42.


The electrocardiogram has several advantages in detecting cardiac arrhythmia—it is readily available, noninvasive and cost-efficient. Recent genome-wide association studies have identified single-nucleotide polymorphisms that are associated with electrocardiogram measures. We performed a genome-wide association study using Korea Association Resource data for the discovery phase (Phase 1, n = 6805) and two consecutive replication studies in Japanese populations (Phase 2, n = 2285; Phase 3, n = 5010) for QRS duration and PR interval. Three novel loci were identified: rs2483280 (PRDM16 locus) and rs335206 (PRDM6 locus) were associated with QRS duration, and rs17026156 (SLC8A1 locus) correlated with PR interval. PRDM16 was recently identified as a causative gene of left ventricular non-compaction and dilated cardiomyopathy in 1p36 deletion syndrome, which is characterized by heart failure, arrhythmia and sudden cardiac death. Thus, our finding that a PRDM16 SNP is linked to QRS duration strongly implicates PRDM16 in cardiac function. In addition, C allele of rs17026156 increases PR interval (beta ± SE, 2.39 ± 0.40 ms) and exists far more frequently in East Asians (0.46) than in Europeans and Africans (0.05 and 0.08, respectively).


Previous reports have described several associations of PR, QRS, QT and heart rate with genomic variations by genome-wide association studies (GWASs). In the present study, we examined the association of ~2.5 million SNPs from 2994 Japanese healthy volunteers obtained from the JPDSC database with electrocardiographic parameters. We confirmed associations of PR interval, QRS duration and QT interval in individuals of Japanese ancestry with 11 of the 45 SNPs (6 of 20 for QT, 5 of 19 for PR and 0 of 6 for QRS) observed among individuals of European, African and Asian (Indian and Korean) ancestries. Those results indicate that many of the electrocardiographic associations with genes are shared by different ethnic groups including Japanese. Possible novel associations found in this study were validated by Korean data. As a result, we identified a novel association of SNP rs4952632[G] (maps near SLC8A1, sodium–calcium exchanger) (P = 7.595 x 10–6) with PR interval in Japanese individuals, and replication testing among Koreans confirmed the association of the same SNP with prolonged PR interval. Meta-analysis of the Japanese and Korean datasets demonstrated highly significant associations of SNP rs4952632[G] with a 2.325-ms (95% CI, 1.693–2.957 ms) longer PR interval per minor allele copy (P = 5.598 x 10–13). Cell-type-specific SLC8A1 knockout mice have demonstrated a regulatory role of sodium–calcium exchanger in automaticity and conduction in sinoatrial node, atrium and atrioventricular node. Our findings support a functional role of sodium–calcium exchanger in human atrial and atrioventricular nodal conduction as suggested by genetically modified mouse models.


An increased rate of de novo copy number variants (CNVs) has been found in schizophrenia (SZ), autism and developmental delay. An increased rate has also been reported in bipolar affective disorder (BD). Here, in a larger BD sample, we aimed to replicate these findings and compare de novo CNVs between SZ and BD. We used Illumina microarrays to genotype 368 BD probands, 76 SZ probands and all their parents. Copy number variants were called by PennCNV and filtered for frequency (<1%) and size (>10 kb). Putative de novo CNVs were validated with the z-score algorithm, manual inspection of log R ratios (LRR) and qPCR probes. We found 15 de novo CNVs in BD (4.1% rate) and 6 in SZ (7.9% rate). Combining results with previous studies and using a cut-off of >100 kb, the rate of de novo CNVs in BD was intermediate between controls and SZ: 1.5% in controls, 2.2% in BD and 4.3% in SZ. Only the differences between SZ and BD and SZ and controls were significant. The median size of de novo CNVs in BD (448 kb) was also intermediate between SZ (613 kb) and controls (338 kb), but only the comparison between SZ and controls was significant. Only one de novo CNV in BD was in a confirmed SZ locus (16p11.2). Sporadic or early onset cases were not more likely to have de novo CNVs. We conclude that de novo CNVs play a smaller role in BD compared with SZ. Patients with a positive family history can also harbour de novo mutations.


Osteoprotegerin (OPG) is involved in bone homeostasis and tumor cell survival. Circulating OPG levels are also important biomarkers of various clinical traits, such as cancers and atherosclerosis. OPG levels were measured in serum or in plasma. In a meta-analysis of genome-wide association studies in up to 10 336 individuals from European and Asian origin, we discovered that variants >100 kb upstream of the TNFRSF11B gene encoding OPG and another new locus on chromosome 17q11.2 were significantly associated with OPG variation. We also identified a suggestive locus on chromosome 14q21.2 associated with the trait. Moreover, we estimated that over half of the heritability of OPG levels could be explained by all variants examined in our study. Our findings provide further insight into the genetic regulation of circulating OPG levels.