• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources


Human Molecular Genetics

Human Molecular Genetics - RSS feed of current issue

Olfactomedin (OLF) domain-containing proteins play roles in fundamental cellular processes and have been implicated in disorders ranging from glaucoma, cancers and inflammatory bowel disorder, to attention deficit disorder and childhood obesity. We solved crystal structures of the OLF domain of myocilin (myoc-OLF), the best studied such domain to date. Mutations in myoc-OLF are causative in the autosomal dominant inherited form of the prevalent ocular disorder glaucoma. The structures reveal a new addition to the small family of five-bladed β-propellers. Propellers are most well known for their ability to act as hubs for protein–protein interactions, a function that seems most likely for myoc-OLF, but they can also act as enzymes. A calcium ion, sodium ion and glycerol molecule were identified within a central hydrophilic cavity that is accessible via movements of surface loop residues. By mapping familial glaucoma-associated lesions onto the myoc-OLF structure, three regions sensitive to aggregation have been identified, with direct applicability to differentiating between neutral and disease-causing non-synonymous mutations documented in the human population worldwide. Evolutionary analysis mapped onto the myoc-OLF structure reveals conserved and divergent regions for possible overlapping and distinctive functional protein–protein or protein–ligand interactions across the broader OLF domain family. While deciphering the specific normal biological functions, ligands and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, atomic detail structural knowledge of myoc-OLF is a valuable guide for understanding the implications of glaucoma-associated mutations and will help focus future studies of this biomedically important domain family.

Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database.

The spliceosome plays a fundamental role in RNA metabolism by facilitating pre-RNA splicing. To understand how this essential complex is formed, we have used protein crystallography to determine the first complete structures of the key assembler protein, SMN, and the truncated isoform, SMN7, which is found in patients with the disease spinal muscular atrophy (SMA). Comparison of the structures of SMN and SMN7 shows many similar features, including the presence of two Tudor domains, but significant differences are observed in the C-terminal domain, including 12 additional amino acid residues encoded by exon 7 in SMN compared with SMN7. Mapping of missense point mutations found in some SMA patients reveals clustering around three spatial locations, with the largest cluster found in the C-terminal domain. We propose a structural model of SMN binding with the Gemin2 protein and a heptameric Sm ring, revealing a critical assembly role of the residues 260–294, with the differences at the C-terminus of SMN7 compared with SMN likely leading to loss of small nuclear ribonucleoprotein (snRNP) assembly. The SMN complex is proposed to form a dimer driven by formation of a glycine zipper involving α helix formed by amino acid residues 263–294. These results explain how structural changes of SMN give rise to loss of SMN-mediated snRNP assembly and support the hypothesis that this loss results in atrophy of neurons in SMA.

Toll-like receptor 4 (TLR4) recognizes specific structural motifs associated with microbial pathogens and also responds to certain endogenous host molecules associated with tissue damage. In Duchenne muscular dystrophy (DMD), inflammation plays an important role in determining the ultimate fate of dystrophic muscle fibers. In this study, we used TLR4-deficient dystrophic mdx mice to assess the role of TLR4 in the pathogenesis of DMD. TLR4 expression was increased and showed enhanced activation following agonist stimulation in mdx diaphragm muscle. Genetic ablation of TLR4 led to significantly increased muscle force generation in dystrophic diaphragm muscle, which was associated with improved histopathology including decreased fibrosis, as well as reduced pro-inflammatory gene expression and macrophage infiltration. TLR4 ablation in mdx mice also altered the phenotype of muscle macrophages by inducing a shift toward a more anti-inflammatory (iNOSneg CD206pos) profile. In vitro experiments confirmed that lack of TLR4 is sufficient to influence macrophage activation status in response to classical polarizing stimuli such as IFN-gamma and IL-4. Finally, treatment of dystrophic mice with glycyrrhizin, an inhibitor of the endogenous TLR4 ligand, high mobility group box (HMGB1), also pointed to involvement of the HMGB1–TLR4 axis in promoting dystrophic diaphragm pathology. Taken together, our findings reveal TLR4 and the innate immune system as important players in the pathophysiology of DMD. Accordingly, targeting either TLR4 or its endogenous ligands may provide a new therapeutic strategy to slow disease progression.

Charcot-Marie-Tooth disease (CMT) is the most commonly inherited neurological disorder with a prevalence of 1 in 2500 people worldwide. Patients suffer from degeneration of the peripheral nerves that control sensory information of the foot/leg and hand/arm. Multiple mutations in the neurofilament light polypeptide gene, NEFL, cause CMT2E. Previous studies in transfected cells showed that expression of disease-associated neurofilament light chain variants results in abnormal intermediate filament networks associated with defects in axonal transport. We have now generated knock-in mice with two different point mutations in Nefl: P8R that has been reported in multiple families with variable age of onset and N98S that has been described as an early-onset, sporadic mutation in multiple individuals. NeflP8R/+ and NeflP8R/P8R mice were indistinguishable from Nefl+/+ in terms of behavioral phenotype. In contrast, NeflN98S/+ mice had a noticeable tremor, and most animals showed a hindlimb clasping phenotype. Immunohistochemical analysis revealed multiple inclusions in the cell bodies and proximal axons of spinal cord neurons, disorganized processes in the cerebellum and abnormal processes in the cerebral cortex and pons. Abnormal processes were observed as early as post-natal day 7. Electron microscopic analysis of sciatic nerves showed a reduction in the number of neurofilaments, an increase in the number of microtubules and a decrease in the axonal diameters. The NeflN98S/+ mice provide an excellent model to study the pathogenesis of CMT2E and should prove useful for testing potential therapies.

Fragile X syndrome results from loss of FMR1 expression. Individuals with the disorder exhibit not only intellectual disability, but also an array of physical and behavioral abnormalities, including sleep difficulties. Studies in mice demonstrated that Fmr1, along with its paralog Fxr2, regulate circadian behavior, and that their absence disrupts expression and cycling of essential clock mRNAs in the liver. Recent reports have identified circadian genes to be essential for normal metabolism. Here we describe the metabolic defects that arise in mice mutated for both Fmr1 and Fxr2. These mice have reduced fat deposits compared with age- and weight-matched controls. Several metabolic markers show either low levels in plasma or abnormal circadian cycling (or both). Insulin levels are consistently low regardless of light exposure and feeding conditions, and the animals are extremely sensitive to injected insulin. Glucose production from introduced pyruvate and glucagon is impaired and the mice quickly clear injected glucose. These mice also have higher food intake and higher VO2 and VCO2 levels. We analyzed liver expression of genes involved in glucose homeostasis and found several that are expressed differentially in the mutant mice. These results point to the involvement of Fmr1 and Fxr2 in maintaining the normal metabolic state in mice.

Proper functioning of cilia, hair-like structures responsible for sensation and locomotion, requires nephrocystin-5 (NPHP5) and a multi-subunit complex called the Bardet–Biedl syndrome (BBS)ome, but their precise relationship is not understood. The BBSome is involved in the trafficking of membrane cargos to cilia. While it is known that a loss of any single subunit prevents ciliary trafficking of the BBSome and its cargos, the mechanisms underlying ciliary entry of this complex are not well characterized. Here, we report that a transition zone protein NPHP5 contains two separate BBS-binding sites and interacts with the BBSome to mediate its integrity. Depletion of NPHP5, or expression of NPHP5 mutant missing one binding site, specifically leads to dissociation of BBS2 and BBS5 from the BBSome and loss of ciliary BBS2 and BBS5 without compromising the ability of the other subunits to traffic into cilia. Depletion of Cep290, another transition zone protein that directly binds to NPHP5, causes additional dissociation of BBS8 and loss of ciliary BBS8. Furthermore, delivery of BBSome cargos, smoothened, VPAC2 and Rab8a, to the ciliary compartment is completely disabled in the absence of single BBS subunits, but is selectively impaired in the absence of NPHP5 or Cep290. These findings define a new role of NPHP5 and Cep290 in controlling integrity and ciliary trafficking of the BBSome, which in turn impinge on the delivery of ciliary cargo.

Maternal smoking during pregnancy has been found to influence newborn DNA methylation in genes involved in fundamental developmental processes. It is pertinent to understand the degree to which the offspring methylome is sensitive to the intensity and duration of prenatal smoking. An investigation of the persistence of offspring methylation associated with maternal smoking and the relative roles of the intrauterine and postnatal environment is also warranted. In the Avon Longitudinal Study of Parents and Children, we investigated associations between prenatal exposure to maternal smoking and offspring DNA methylation at multiple time points in approximately 800 mother–offspring pairs. In cord blood, methylation at 15 CpG sites in seven gene regions (AHRR, MYO1G, GFI1, CYP1A1, CNTNAP2, KLF13 and ATP9A) was associated with maternal smoking, and a dose-dependent response was observed in relation to smoking duration and intensity. Longitudinal analysis of blood DNA methylation in serial samples at birth, age 7 and 17 years demonstrated that some CpG sites showed reversibility of methylation (GFI1, KLF13 and ATP9A), whereas others showed persistently perturbed patterns (AHRR, MYO1G, CYP1A1 and CNTNAP2). Of those showing persistence, we explored the effect of postnatal smoke exposure and found that the major contribution to altered methylation was attributed to a critical window of in utero exposure. A comparison of paternal and maternal smoking and offspring methylation showed consistently stronger maternal associations, providing further evidence for causal intrauterine mechanisms. These findings emphasize the sensitivity of the methylome to maternal smoking during early development and the long-term impact of such exposure.

We report two siblings with infantile onset seizures, severe developmental delay and spastic paraplegia, in whom whole-genome sequencing revealed compound heterozygous mutations in the AP4S1 gene, encoding the subunit of the adaptor protein complex 4 (AP-4). The effect of the predicted loss-of-function variants (p.Gln46Profs*9 and p.Arg97*) was further investigated in a patient's fibroblast cell line. We show that the premature stop mutations in AP4S1 result in a reduction of all AP-4 subunits and loss of AP-4 complex assembly. Recruitment of the AP-4 accessory protein tepsin, to the membrane was also abolished. In retrospect, the clinical phenotype in the family is consistent with previous reports of the AP-4 deficiency syndrome. Our study reports the second family with mutations in AP4S1 and describes the first two patients with loss of AP4S1 and seizures. We further discuss seizure phenotypes in reported patients, highlighting that seizures are part of the clinical manifestation of the AP-4 deficiency syndrome. We also hypothesize that endosomal trafficking is a common theme between heritable spastic paraplegia and some inherited epilepsies.

Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150Glued develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset.

Binding of cellular α-dystroglycan (α-DG) to its extracellular matrix ligands is fully dependent on a unique O-mannose-linked glycan. Disrupted O-mannosylation is the hallmark of the muscular dystrophy-dystroglycanopathy (MDDG) syndromes. SLC35A1, encoding the transporter of cytidine 5'-monophosphate-sialic acid, was recently identified as MDDG candidate gene. This is surprising, since sialic acid itself is dispensable for α-DG-ligand binding. In a novel SLC35A1-deficient cell model, we demonstrated a lack of α-DG O-mannosylation, ligand binding and incorporation of sialic acids. Removal of sialic acids from HAP1 wild-type cells after incorporation or preventing sialylation during synthesis did not affect α-DG O-mannosylation or ligand binding but did affect sialylation. Lentiviral-mediated complementation with the only known disease mutation p.Q101H failed to restore deficient O-mannosylation in SLC35A1 knockout cells and partly restored sialylation. These data indicate a role for SLC35A1 in α-DG O-mannosylation that is distinct from sialic acid metabolism. In addition, human SLC35A1 deficiency can be considered as a combined disorder of α-DG O-mannosylation and sialylation, a novel variant of the MDDG syndromes.

Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy.

Colobomatous macrophthalmia with microcornea syndrome (MACOM, Online Mendelian Inheritance in Man (OMIM) 602499) is an autosomal dominantly inherited malformation of the eye, which is characterized by microcornea with increased axial length, coloboma of the iris and of the optic disc, and severe myopia. We performed whole-exome sequencing (WES) in two affected individuals from the 2p23-p16-linked MACOM family, which includes 13 affected individuals in 3 generations. As no shared novel variation was found on the linked haplotype, we performed copy number variation (CNV) analysis by comparing the coverage of all exons in the WES data sets of the 2 patients with the coverage of 26 control exomes. We identified a heterozygous deletion predicted to span 22 kb including exons 14–17 of CRIM1 (cysteine-rich transmembrane bone morphogenetic protein (BMP) regulator 1). Quantitative PCR (qPCR) analysis confirmed the deletion, which was present in 11 affected individuals. Split-read analysis of WES data followed by breakpoint PCR and Sanger sequencing determined both breakpoints flanked by a 4-bp microhomology (CTTG). In the mouse, Crim1 is a growth-factor-binding protein with pleiotropic roles in the development of multiple organs, including the eye. To investigate the role of Crim1 during eye development in mice, we crossed a Crim1flox mouse line with the Ap2α-cre mouse line, which expresses Cre in the head surface ectoderm. Strikingly, we observed alterations of eye development in homozygous mice leading to severe anatomical and morphological changes overlapping with the anomalies observed in MACOM patients. Taken together, these findings identify CRIM1 as the causative gene for MACOM syndrome and emphasize the importance of CRIM1 in eye development.

Friedreich's ataxia (FRDA) is a neurodegenerative disorder associated with cardiomyopathy and diabetes. Effective therapies for FRDA are an urgent unmet need; there are currently no options to prevent or treat this orphan disease. FRDA is caused by reduced expression of the mitochondrial protein frataxin. We have previously demonstrated that pancreatic β-cell dysfunction and death cause diabetes in FRDA. This is secondary to mitochondrial dysfunction and apoptosis but the underlying molecular mechanisms are not known. Here we show that β-cell demise in frataxin deficiency is the consequence of oxidative stress-mediated activation of the intrinsic pathway of apoptosis. The pro-apoptotic Bcl-2 family members Bad, DP5 and Bim are the key mediators of frataxin deficiency-induced β-cell death. Importantly, the intrinsic pathway of apoptosis is also activated in FRDA patients' induced pluripotent stem cell-derived neurons. Interestingly, cAMP induction normalizes mitochondrial oxidative status and fully prevents activation of the intrinsic pathway of apoptosis in frataxin-deficient β-cells and neurons. This preclinical study suggests that incretin analogs hold potential to prevent/delay both diabetes and neurodegeneration in FRDA.

Glycogen storage disease type 1a (GSD1a) is a rare disease due to the deficiency in the glucose-6-phosphatase (G6Pase) catalytic subunit (encoded by G6pc), which is essential for endogenous glucose production. Despite strict diet control to maintain blood glucose, patients with GSD1a develop hepatomegaly, steatosis and then hepatocellular adenomas (HCA), which can undergo malignant transformation. Recently, gene therapy has attracted attention as a potential treatment for GSD1a. In order to maintain long-term transgene expression, we developed an HIV-based vector, which allowed us to specifically express the human G6PC cDNA in the liver. We analysed the efficiency of this lentiviral vector in the prevention of the development of the hepatic disease in an original GSD1a mouse model, which exhibits G6Pase deficiency exclusively in the liver (L-G6pc–/– mice). Recombinant lentivirus were injected in B6.G6pcex3lox/ex3lox. SAcreERT2/w neonates and G6pc deletion was induced by tamoxifen treatment at weaning. Magnetic resonance imaging was then performed to follow up the development of hepatic tumours. Lentiviral gene therapy restored glucose-6 phosphatase activity sufficient to correct fasting hypoglycaemia during 9 months. Moreover, lentivirus-treated L-G6pc–/– mice presented normal hepatic triglyceride levels, whereas untreated mice developed steatosis. Glycogen stores were also decreased although liver weight remained high. Interestingly, lentivirus-treated L-G6pc–/– mice were protected against the development of hepatic tumours after 9 months of gene therapy while most of untreated L-G6pc–/– mice developed millimetric HCA. Thus the treatment of newborns by recombinant lentivirus appears as an attractive approach to protect the liver from the development of steatosis and hepatic tumours associated to GSD1a pathology.

Functional defects of the mitochondrial translation machinery, as a result of mutations in nuclear-encoded genes, have been associated with combined oxidative phosphorylation (OXPHOS) deficiencies. We report siblings with congenital sensorineural deafness and lactic acidemia in association with combined respiratory chain (RC) deficiencies of complexes I, III and IV observed in fibroblasts and liver. One of the siblings had a more severe phenotype showing progressive hepatic and renal failure. Whole-exome sequencing revealed a homozygous mutation in the gene encoding mitochondrial ribosomal protein S7 (MRPS7), a c.550A>G transition that encodes a substitution of valine for a highly conserved methionine (p.Met184Val) in both affected siblings. MRPS7 is a 12S ribosomal RNA-binding subunit of the small mitochondrial ribosomal subunit, and is required for the assembly of the small ribosomal subunit. Pulse labeling of mitochondrial protein synthesis products revealed impaired mitochondrial protein synthesis in patient fibroblasts. Exogenous expression of wild-type MRPS7 in patient fibroblasts rescued complexes I and IV activities, demonstrating the deleterious effect of the mutation on RC function. Moreover, reduced 12S rRNA transcript levels observed in the patient's fibroblasts were also restored to normal levels by exogenous expression of wild-type MRPS7. Our data demonstrate the pathogenicity of the identified MRPS7 mutation as a novel cause of mitochondrial RC dysfunction, congenital sensorineural deafness and progressive hepatic and renal failure.

Parkinson's disease (PD) is an age-dependent neurodegenerative disease that can be caused by genetic mutations in α-synuclein (α-syn) or duplication of wild-type α-syn; PD is characterized by the deposition of α-syn aggregates, indicating a gain of toxicity from accumulation of α-syn. Although the major neuropathologic feature of PD is the degeneration of dopaminergic (DA) neurons in the substantia nigra, non-motor symptoms including anxiety, cognitive defect and sleep disorder precede the onset of motor impairment, and many clinical symptoms of PD are not caused by degeneration of DA neurons. Non-human primate models of PD are important for revealing the early pathology in PD and identifying effective treatments. We established transgenic PD rhesus monkeys that express mutant α-syn (A53T). Six transgenic A53T monkeys were produced via lentiviral vector expressing A53T in fertilized monkey eggs and subsequent embryo transfer to surrogates. Transgenic A53T is expressed in the monkey brain and causes age-dependent non-motor symptoms, including cognitive defects and anxiety phenotype, without detectable sleeping disorders. The transgenic α-syn monkeys demonstrate the specific early symptoms caused by mutant α-syn and provide insight into treatment of early PD.

Anaplastic thyroid carcinoma (ATC) is a frequently lethal malignancy that is often unresponsive to available therapeutic strategies. The tumorigenesis of ATC and its relationship to the widely prevalent well-differentiated thyroid carcinomas are unclear. We have analyzed 22 cases of ATC as well as 4 established ATC cell lines using whole-exome sequencing. A total of 2674 somatic mutations (121/sample) were detected. Ontology analysis revealed that the majority of variants aggregated in the MAPK, ErbB and RAS signaling pathways. Mutations in genes related to malignancy not previously associated with thyroid tumorigenesis were observed, including mTOR, NF1, NF2, MLH1, MLH3, MSH5, MSH6, ERBB2, EIF1AX and USH2A; some of which were recurrent and were investigated in 24 additional ATC cases and 8 ATC cell lines. Somatic mutations in established thyroid cancer genes were detected in 14 of 22 (64%) tumors and included recurrent mutations in BRAF, TP53 and RAS-family genes (6 cases each), as well as PIK3CA (2 cases) and single cases of CDKN1B, CDKN2C, CTNNB1 and RET mutations. BRAF V600E and RAS mutations were mutually exclusive; all ATC cell lines exhibited a combination of mutations in either BRAF and TP53 or NRAS and TP53. A hypermutator phenotype in two cases with >8 times higher mutational burden than the remaining mean was identified; both cases harbored unique somatic mutations in MLH mismatch-repair genes. This first comprehensive exome-wide analysis of the mutational landscape of ATC identifies novel genes potentially associated with ATC tumorigenesis, some of which may be targets for future therapeutic intervention.

T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1cKO) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1cKO mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.

Several studies have recently identified strong epigenetic signals related to tobacco smoking. However, an aspect that did not receive much attention is the evolution of epigenetic changes with time since smoking cessation. We conducted a series of epigenome-wide association studies to capture the dynamics of smoking-induced epigenetic changes after smoking cessation, using genome-wide methylation profiles obtained from blood samples in 745 women from 2 European populations. Two distinct classes of CpG sites were identified: sites whose methylation reverts to levels typical of never smokers within decades after smoking cessation, and sites remaining differentially methylated, even more than 35 years after smoking cessation. Our results suggest that the dynamics of methylation changes following smoking cessation are driven by a differential and site-specific magnitude of the smoking-induced alterations (with persistent sites being most affected) irrespective of the intensity and duration of smoking. Analyses of the link between methylation and expression levels revealed that methylation predominantly and remotely down-regulates gene expression. Among genes whose expression was associated with our candidate CpG sites, LRRN3 appeared to be particularly interesting as it was one of the few genes whose methylation and expression were directly associated, and the only gene in which both methylation and gene expression were found associated with smoking. Our study highlights persistent epigenetic markers of smoking, which can potentially be detected decades after cessation. Such historical signatures are promising biomarkers to refine individual risk profiling of smoking-induced chronic disease such as lung cancer.

The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain-specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a Caenorhabditis elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1–/– muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1–/– muscle. Moreover, muscle function was significantly impaired in Rbfox1–/– muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of AS events required to maintain multiple aspects of muscle physiology.

Cardiac left ventricular outflow tract (LVOT) defects represent a common but heterogeneous subset of congenital heart disease for which gene identification has been difficult. We describe a 46,XY,t(1;5)(p36.11;q31.2)dn translocation carrier with pervasive developmental delay who also exhibited LVOT defects, including bicuspid aortic valve (BAV), coarctation of the aorta (CoA) and patent ductus arteriosus (PDA). The 1p breakpoint disrupts the 5' UTR of AHDC1, which encodes AT-hook DNA-binding motif containing-1 protein, and AHDC1-truncating mutations have recently been described in a syndrome that includes developmental delay, but not congenital heart disease [Xia, F., Bainbridge, M.N., Tan, T.Y., Wangler, M.F., Scheuerle, A.E., Zackai, E.H., Harr, M.H., Sutton, V.R., Nalam, R.L., Zhu, W. et al. (2014) De Novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am. J. Hum. Genet., 94, 784–789]. On the other hand, the 5q translocation breakpoint disrupts the 3' UTR of MATR3, which encodes the nuclear matrix protein Matrin 3, and mouse Matr3 is strongly expressed in neural crest, developing heart and great vessels, whereas Ahdc1 is not. To further establish MATR3 3' UTR disruption as the cause of the proband's LVOT defects, we prepared a mouse Matr3Gt-ex13 gene trap allele that disrupted the 3' portion of the gene. Matr3Gt-ex13 homozygotes are early embryo lethal, but Matr3Gt-ex13 heterozygotes exhibit incompletely penetrant BAV, CoA and PDA phenotypes similar to those in the human proband, as well as ventricular septal defect (VSD) and double-outlet right ventricle (DORV). Both the human MATR3 translocation breakpoint and the mouse Matr3Gt-ex13 gene trap insertion disturb the polyadenylation of MATR3 transcripts and alter Matrin 3 protein expression, quantitatively or qualitatively. Thus, subtle perturbations in Matrin 3 expression appear to cause similar LVOT defects in human and mouse.

Lipoprotein (a) [Lp(a)] is an independent risk factor for atherosclerosis-related events that is under strong genetic control (heritability = 0.68–0.98). However, causal mutations and functional validation of biological pathways modulating Lp(a) metabolism are lacking. We performed a genome-wide association scan to identify genetic variants associated with Lp(a)-cholesterol levels in the Old Order Amish. We confirmed a previously known locus on chromosome 6q25-26 and found Lp(a) levels also to be significantly associated with a SNP near the APOA5–APOA4–APOC3–APOA1 gene cluster on chromosome 11q23 linked in the Amish to the APOC3 R19X null mutation. On 6q locus, we detected associations of Lp(a)-cholesterol with 118 common variants (P = 5 x 10–8 to 3.91 x 10–19) spanning a ~5.3 Mb region that included the LPA gene. To further elucidate variation within LPA, we sequenced LPA and identified two variants most strongly associated with Lp(a)-cholesterol, rs3798220 (P = 1.07 x 10–14) and rs10455872 (P = 1.85 x 10–12). We also measured copy numbers of kringle IV-2 (KIV-2) in LPA using qPCR. KIV-2 numbers were significantly associated with Lp(a)-cholesterol (P = 2.28 x 10–9). Conditional analyses revealed that rs3798220 and rs10455872 were associated with Lp(a)-cholesterol levels independent of each other and KIV-2 copy number. Furthermore, we determined for the first time that levels of LPA mRNA were higher in the carriers than non-carriers of rs10455872 (P = 0.0001) and were not different between carriers and non-carriers of rs3798220. Protein levels of apo(a) were higher in the carriers than non-carriers of both rs10455872 and rs3798220. In summary, we identified multiple independent genetic determinants for Lp(a)-cholesterol. These findings provide new insights into Lp(a) regulation.

Reduced activated partial thromboplastin time (aPTT) is a risk marker for incident and recurrent venous thromboembolism (VTE). Genetic factors influencing aPTT are not well understood, especially in populations of non-European ancestry. The present study aimed to identify aPTT-related gene variants in both European Americans (EAs) and African Americans (AAs). We conducted a genetic association study for aPTT in 9719 EAs and 2799 AAs from the Atherosclerosis Risk in Communities (ARIC) study. Using the Candidate Gene Association Resource (CARe) consortium candidate gene array, the analyses were based on ~50 000 SNPs in ~2000 candidate genes. In EAs, the analyses identified a new independent association for aPTT in F5 (rs2239852, P-value = 1.9 x 10–8), which clusters with a coding variant rs6030 (P-value = 7.8 x 10–7). The remaining significant signals were located on F5, HRG, KNG1, F11, F12 and ABO and have been previously reported in EA populations. In AAs, significant signals were identified in KNG1, HRG, F12, ABO and VWF, with the leading variants in KNG1, HRG and F12 being the same as in the EAs; the significant variant in VWF (rs2229446, P-value = 1.2 x 10–6) was specific to the AA sample (minor allele frequency = 19% in AAs and 0.2% in EAs) and has not been previously reported. This is the first study to report aPTT-related genetic variants in AAs. Our findings in AAs demonstrate transferability of previously reported associations with KNG1, HRG and F12 in EAs. We also identified new associations at F5 in EAs and VWF in AAs that have not been previously reported for aPTT.