• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center
 

Member Resources

Publications

Journal of Biological Chemistry, The

Journal of Biological Chemistry RSS feed -- current issue
Journal of Biological Chemistry
Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with “target” RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects.

The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.

Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery.

Genome-wide studies have revealed that genes commonly have a high density of RNA polymerase II just downstream of the transcription start site. This has raised the possibility that genes are commonly regulated by transcriptional elongation, but this remains largely untested in vivo, particularly in vertebrates. Here, we show that the proximal promoter from the Rhox5 homeobox gene recruits polymerase II and begins elongating in all tissues and cell lines that we tested, but it only completes elongation in a tissue-specific and developmentally regulated manner. Relief of the elongation block is associated with recruitment of the elongation factor P-TEFb, the co-activator GRIP1, the chromatin remodeling factor BRG1, and specific histone modifications. We provide evidence that two mechanisms relieve the elongation block at the proximal promoter: demethylation and recruitment of androgen receptor. Together, our findings support a model in which promoter proximal pausing helps confer tissue-specific and developmental gene expression through a mechanism regulated by DNA demethylation-dependent nuclear hormone receptor recruitment.

Vpu is an accessory protein encoded by HIV-1 that interferes with multiple host-cell functions. Herein we report that expression of Vpu by transfection into 293T cells causes partial proteolytic cleavage of interferon regulatory factor 3 (IRF3), a key transcription factor in the innate anti-viral response. Vpu-induced IRF3 cleavage is mediated by caspases and occurs mainly at Asp-121. Cleavage produces a C-terminal fragment of ∼37 kDa that comprises the IRF dimerization and transactivation domains but lacks the DNA-binding domain. A similar cleavage is observed upon infection of the Jurkat T-cell line with vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1. Two other HIV-1 accessory proteins, Vif and Vpr, also contribute to the induction of IRF3 cleavage in both the transfection and the infection systems. The C-terminal IRF3 fragment interferes with the transcriptional activity of full-length IRF3. Cleavage of IRF3 under all of these conditions correlates with cleavage of poly(ADP-ribose) polymerase, an indicator of apoptosis. We conclude that Vpu contributes to the attenuation of the anti-viral response by partial inactivation of IRF3 while host cells undergo apoptosis.

Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation.

The retrotransposon DIRS-1 is the most abundant retroelement in Dictyostelium discoideum and constitutes the pericentromeric heterochromatin of the six chromosomes in D. discoideum. The vast majority of cellular siRNAs is derived from DIRS-1, suggesting that the element is controlled by RNAi-related mechanisms. We investigated the role of two of the five Argonaute proteins of D. discoideum, AgnA and AgnB, in DIRS-1 silencing. Deletion of agnA resulted in the accumulation of DIRS-1 transcripts, the expression of DIRS-1-encoded proteins, and the loss of most DIRS-1-derived secondary siRNAs. Simultaneously, extrachromosomal single-stranded DIRS-1 DNA accumulated in the cytoplasm of agnA− strains. These DNA molecules appear to be products of reverse transcription and thus could represent intermediate structures before transposition. We further show that transitivity of endogenous siRNAs is impaired in agnA− strains. The deletion of agnB alone had no strong effect on DIRS-1 transposon regulation. However, in agnA−/agnB− double mutant strains strongly reduced accumulation of extrachromosomal DNA compared with the single agnA− strains was observed.

The instability of regulatory T (Treg) cells is involved in the pathogenesis of autoimmune diseases and also highlights safety concerns with regard to clinical Treg cell therapy. Cell-intrinsic molecular events linked to this Treg cell instability in vivo cells, which leads to safety concerns regardingare still obscure. Here we developed a novel luciferase-based reporter system and performed an unbiased screening for kinases that potentially modulate Foxp3 function. We found that the active form of COT/Tpl2 specifically inhibits the DNA binding activity of Foxp3 through a MEK-ERK-dependent pathway. Moreover, Treg cell-specific expression of activated MEK1 led to dysregulation of Treg function and instability of Foxp3 expression in vivo. Our results support the hypothesis that outside inflammatory signals act through the COT/Tpl2-MEK-ERK signaling pathway to destabilize the Treg lineage.

Sialic acid terminates glycans of glycoproteins and glycolipids that play numerous biological roles in health and disease. Although genetic tools are available for interrogating the effects of decreased or abolished sialoside expression in mice, pharmacological inhibition of the sialyltransferase family has, to date, not been possible. We have recently shown that a sialic acid analog, 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-NeuAc), added to the media of cultured cells shuts down sialylation by a mechanism involving its intracellular conversion to CMP-3F-NeuAc, a competitive inhibitor of all sialyltransferases. Here we show that administering 3F-NeuAc to mice dramatically decreases sialylated glycans in cells of all tissues tested, including blood, spleen, liver, brain, lung, heart, kidney, and testes. A single dose results in greatly decreased sialoside expression for over 7 weeks in some tissues. Although blockade of sialylation with 3F-NeuAc does not affect viability of cultured cells, its use in vivo has a deleterious “on target” effect on liver and kidney function. After administration of 3F-NeuAc, liver enzymes in the blood are dramatically altered, and mice develop proteinuria concomitant with dramatic loss of sialic acid in the glomeruli within 4 days, leading to irreversible kidney dysfunction and failure to thrive. These results confirm a critical role for sialosides in liver and kidney function and document the feasibility of pharmacological inhibition of sialyltransferases for in vivo modulation of sialoside expression.

Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling.

The Mycobacterium tuberculosis cell wall is a complex structure essential for the viability of the organism and its interaction with the host. The glycolipid lipoarabinomannan (LAM) plays an important role in mediating host-bacteria interactions and is involved in modulation of the immune response. The arabinosyltransferase EmbC required for LAM biosynthesis is essential. We constructed recombinant strains of M. tuberculosis expressing a variety of alleles of EmbC. We demonstrated that EmbC has a functional signal peptide in M. tuberculosis. Over- or underexpression of EmbC resulted in reduced or increased sensitivity to ethambutol, respectively. The C-terminal domain of EmbC was essential for activity because truncated alleles were unable to mediate LAM production in Mycobacterium smegmatis and were unable to complement an embC deletion in M. tuberculosis. The C-terminal domain of the closely related arabinosyltransferase EmbB was unable to complement the function of the EmbC C-terminal domain. Two functional motifs were identified. The GT-C motif contains two aspartate residues essential for function in the DDX motif. The proline-rich region contains two highly conserved asparagines (Asn-638 and Asn-652). Mutation of these residues was tolerated, but loss of Asn-638 resulted in the synthesis of truncated LAM, which appeared to lack arabinose branching. All embC alleles that were incapable of complementing LAM production in M. smegmatis were not viable in M. tuberculosis, supporting the hypothesis that LAM itself is essential in M. tuberculosis.

Depletion of the central metabolite NAD in cells results in broad metabolic defects leading to cell death and is a proposed novel therapeutic strategy in oncology. There is, however, a limited understanding of the underlying mechanisms that connect disruption of this central metabolite with cell death. Here we utilize GNE-617, a small molecule inhibitor of NAMPT, a rate-limiting enzyme required for NAD generation, to probe the pathways leading to cell death following NAD depletion. In all cell lines examined, NAD was rapidly depleted (average t½ of 8.1 h) following NAMPT inhibition. Concurrent with NAD depletion, there was a decrease in both cell proliferation and motility, which we attribute to reduced activity of NAD-dependent deacetylases because cells fail to deacetylate α-tubulin-K40 and histone H3-K9. Following depletion of NAD by >95%, cells lose the ability to regenerate ATP. Cell lines with a slower rate of ATP depletion (average t½ of 45 h) activate caspase-3 and show evidence of apoptosis and autophagy, whereas cell lines with rapid depletion ATP (average t½ of 32 h) do not activate caspase-3 or show signs of apoptosis or autophagy. However, the predominant form of cell death in all lines is oncosis, which is driven by the loss of plasma membrane homeostasis once ATP levels are depleted by >20-fold. Thus, our work illustrates the sequence of events that occurs in cells following depletion of a key metabolite and reveals that cell death caused by a loss of NAD is primarily driven by the inability of cells to regenerate ATP.

Mucin 1 (MUC1) is overexpressed in various human malignant tumors and its expression is correlated with a poor prognosis. MUC1 engages in signal transduction by interacting with receptors for growth and differentiation factors, which contributes to the growth and survival of cancer cells. However, the mechanism by which MUC1 promotes cancer cell invasion remains unclear. Microarray analysis revealed that expression of urokinase-type plasminogen activator (uPA) was elevated in MUC1-overexpressing cells. Furthermore, up- and down-modulation of MUC1 expression was clearly correlated with the change of uPA expression. An immunochemical study showed that the distribution of uPA coincided with that of MUC1 in various human cancer tissues. The MUC1 C-terminal domain (MUC1-CD) was associated with nuclear factor-κB (NF-κB) p65 in MUC1-expressing cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that MUC1-CD existed with NF-κB p65 on the uPA promoter. Luciferase assays indicated that the uPA transcriptional activity was correlated with the level of MUC1 expression and that this MUC1-enhancing effect on the uPA transcription was abolished by introduction of mutations into the NF-κB binding sites on the uPA promoter. These results indicate that formation of the MUC1-CD and NF-κB p65 complex enhanced nuclear translocation of NF-κB p65 and subsequent occupancy of NF-κB binding region on the uPA promoter, leading to elevated transcription of uPA. We also demonstrated that uPA induced by MUC1 enhanced the matrix metalloproteinase (MMP)-2 and -9 activities, and consequently promoted cancer cell invasion. Thus, a MUC1 co-operating NF-κB signaling pathway plays a critical role in cancer cell invasion in MUC1-expressing cells.

ECSIT (evolutionarily conserved signaling intermediate in Toll pathways) is known as a multifunctional regulator in different signals, including Toll-like receptors (TLRs), TGF-β, and BMP. Here, we report a new regulatory role of ECSIT in TLR4-mediated signal. By LPS stimulation, ECSIT formed a high molecular endogenous complex including TAK1 and TRAF6, in which ECSIT interacted with each protein and regulated TAK1 activity, leading to the activation of NF-κB. ECSIT-knockdown THP-1 (ECSITKD THP-1) cells exhibited severe impairments in NF-κB activity, cytokine production, and NF-κB-dependent gene expression, whereas those were dramatically restored by reintroduction of wild type (WT) ECSIT gene. Interestingly, ECSIT mutants, which lack a specific interacting domain for either TAK1 or TRAF6, could not restore these activities. Moreover, no significant changes in both NF-κB activity and cytokine production induced by TLR4 could be seen in TAK1KD or TRAF6KD THP-1 cells transduced by WT ECSIT, strongly suggesting the essential requirement of TAK1-ECSIT-TRAF6 complex in TLR4 signaling. Taken together, our data demonstrate that the ECSIT complex, including TAK1 and TRAF6, plays a pivotal role in TLR4-mediated signals to activate NF-κB.

Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys66 as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. 1H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys66 for the epimerization reaction with participation of neighboring Arg43, Asp126, and Glu180 residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases.

Streptococcus equi is the causative agent of the highly contagious disease “strangles” in equines and zoonotic meningitis in human. Spreading of infection in host tissues is thought to be facilitated by the bacterial gene encoded extracellular hyaluronate lyase (HL), which degrades hyaluronan (HA), chondroitin 6-sulfate, and dermatan sulfate of the extracellular matrix). The clinical strain S. equi 4047 however, lacks a functional extracellular HL. The prophages of S. equi and other streptococci encode intracellular HLs which are reported to partially degrade HA and do not cleave any other glycosaminoglycans. The phage HLs are thus thought to play a role limited to the penetration of streptococcal HA capsules, facilitating bacterial lysogenization and not in the bacterial pathogenesis. Here we systematically looked into the structure-function relationship of S. equi 4047 phage HL. Although HA is the preferred substrate, this HL has weak activity toward chondroitin 6-sulfate and dermatan sulfate and can completely degrade all of them. Even though the catalytic triple-stranded β-helix domain of phage HL is functionally independent, its catalytic efficiency and specificity is influenced by the N-terminal domain. The phage HL also interacts with human transmembrane glycoprotein CD44. The above results suggest that the streptococci can use phage HLs to degrade glycosaminoglycans of the extracellular matrix for spreading virulence factors and toxins while utilizing the disaccharides as a nutrient source for proliferation at the site of infection.

In reply to internal or external danger stimuli, the body orchestrates an inflammatory response. The endogenous triggers of this process are the damage-associated molecular patterns (DAMPs). DAMPs represent a heterogeneous group of molecules that draw their origin either from inside the various compartments of the cell or from the extracellular space. Following interaction with pattern recognition receptors in cross-talk with various non-immune receptors, DAMPs determine the downstream signaling outcome of septic and aseptic inflammatory responses. In this review, the diverse nature, structural characteristics, and signaling pathways elicited by DAMPs will be critically evaluated.

Influenza infection exacerbates chronic pulmonary diseases, including idiopathic pulmonary fibrosis. A central pathway in the pathogenesis of idiopathic pulmonary fibrosis is epithelial injury leading to activation of transforming growth factor β (TGFβ). The mechanism and functional consequences of influenza-induced activation of epithelial TGFβ are unclear. Influenza stimulates toll-like receptor 3 (TLR3), which can increase RhoA activity, a key event prior to activation of TGFβ by the αvβ6 integrin. We hypothesized that influenza would stimulate TLR3 leading to activation of latent TGFβ via αvβ6 integrin in epithelial cells. Using H1152 (IC50 6.1 μm) to inhibit Rho kinase and 6.3G9 to inhibit αvβ6 integrins, we demonstrate their involvement in influenza (A/PR/8/34 H1N1) and poly(I:C)-induced TGFβ activation. We confirm the involvement of TLR3 in this process using chloroquine (IC50 11.9 μm) and a dominant negative TLR3 construct (pZERO-hTLR3). Examination of lungs from influenza-infected mice revealed augmented levels of collagen deposition, phosphorylated Smad2/3, αvβ6 integrin, and apoptotic cells. Finally, we demonstrate that αvβ6 integrin-mediated TGFβ activity following influenza infection promotes epithelial cell death in vitro and enhanced collagen deposition in vivo and that this response is diminished in Smad3 knock-out mice. These data show that H1N1 and poly(I:C) can induce αvβ6 integrin-dependent TGFβ activity in epithelial cells via stimulation of TLR3 and suggest a novel mechanism by which influenza infection may promote collagen deposition in fibrotic lung disease.

VOLUME 289 (2014) PAGES 28040–28053 Dr. Herbert Y. Giasano's name should appear as Herbert Y. Gaisano.

Transient receptor potential (TRP) channel melastatin subfamily member 4 (TRPM4) is a broadly expressed nonselective monovalent cation channel. TRPM4 is activated by membrane depolarization and intracellular Ca2+, which is essential for the activation. The Ca2+ sensitivity is known to be regulated by calmodulin and membrane phosphoinositides, such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Although these regulators must play important roles in controlling TRPM4 activity, mutation analyses of the calmodulin-binding sites have suggested that Ca2+ binds to TRPM4 directly. However, the intrinsic binding sites in TRPM4 remain to be elucidated. Here, by using patch clamp and molecular biological techniques, we show that there are at least two functionally different divalent cation-binding sites, and the negatively charged amino acids near and in the TRP domain in the C-terminal tail of TRPM4 (Asp-1049 and Glu-1062 of rat TRPM4) are required for maintaining the normal Ca2+ sensitivity of one of the binding sites. Applications of Co2+, Mn2+, or Ni2+ to the cytosolic side potentiated TRPM4 currents, increased the Ca2+ sensitivity, but were unable to evoke TRPM4 currents without Ca2+. Mutations of the acidic amino acids near and in the TRP domain, which are conserved in TRPM2, TRPM5, and TRPM8, deteriorated the Ca2+ sensitivity in the presence of Co2+ or PI(4,5)P2 but hardly affected the sensitivity to Co2+ and PI(4,5)P2. These results suggest a novel role of the TRP domain in TRPM4 as a site responsible for maintaining the normal Ca2+ sensitivity. These findings provide more insights into the molecular mechanisms of the regulation of TRPM4 by Ca2+.

Two types of G protein-coupled receptors for endothelin-1 (ET-1), ET type A receptor (ETAR) and ETBR, closely resemble each other, but upon ET-1 stimulation, they follow totally different intracellular trafficking pathways; ETAR is recycled back to plasma membrane, whereas ETBR is targeted to lysosome for degradation. However, the mechanisms for such different fates are unknown. Here we demonstrated that ETBR but not ETAR was ubiquitinated on the cell surface following ET-1 stimulation and that ETBR was internalized and degraded in lysosome more rapidly than ETAR. The mutant ETBR (designated “5KR mutant”) in which 5 lysine residues in the C-tail were substituted to arginine was not ubiquitinated, and its rates of internalization and degradation after ET-1 stimulation became slower, being comparable with those of ETAR. Confocal microscopic study showed that following ET-1 stimulation, ETAR and 5KR mutant of ETBR were co-localized mainly with Rab11, a marker of recycling endosome, whereas ETBR was co-localized with Rab7, a marker of late endosome/lysosome. In the 5KR mutant, ET-1-induced ERK phosphorylation and an increase in the intracellular Ca2+ concentration upon repetitive ET-1 stimulation were larger. A series of ETBR mutants (designated “4KR mutant”), in which either one of 5 arginine residues of the 5KR mutant was reverted to lysine, were normally ubiquitinated, internalized, and degraded, with ERK phosphorylation being normalized. These results demonstrate that agonist-induced ubiquitination at either lysine residue in the C-tail of ETBR but not ETAR switches intracellular trafficking from recycling to plasma membrane to targeting to lysosome, causing decreases in the cell surface level of ETBR and intracellular signaling.

Recent evidence indicates that U1-70K and other U1 small nuclear ribonucleoproteins are Sarkosyl-insoluble and associate with Tau neurofibrillary tangles selectively in Alzheimer disease (AD). Currently, the mechanisms underlying the conversion of soluble nuclear U1 small nuclear ribonucleoproteins into insoluble cytoplasmic aggregates remain elusive. Based on the biochemical and subcellular distribution properties of U1-70K in AD, we hypothesized that aggregated U1-70K itself or other biopolymers (e.g. proteins or nucleic acids) interact with and sequester natively folded soluble U1-70K into insoluble aggregates. Here, we demonstrate that total homogenates from AD brain induce soluble U1-70K from control brain or recombinant U1-70K to become Sarkosyl-insoluble. This effect was not dependent on RNA and did not correlate with detergent-insoluble Tau levels as AD homogenates with reduced levels of these components were still capable of inducing U1-70K aggregation. In contrast, proteinase K-treated AD homogenates and Sarkosyl-soluble AD fractions were unable to induce U1-70K aggregation, indicating that aggregated proteins in AD brain are responsible for inducing soluble U1-70K aggregation. It was determined that the C terminus of U1-70K, which harbors two disordered low complexity (LC) domains, is necessary for U1-70K aggregation. Moreover, both LC1 and LC2 domains were sufficient for aggregation. Finally, protein cross-linking and mass spectrometry studies demonstrated that a U1-70K fragment harboring the LC1 domain directly interacts with aggregated U1-70K in AD brain. Our results support a hypothesis that aberrant forms of U1-70K in AD can directly sequester soluble forms of U1-70K into insoluble aggregates.

Calcium/voltage-gated, large conductance potassium (BK) channels control numerous physiological processes, including myogenic tone. BK channel regulation by direct interaction between lipid and channel protein sites has received increasing attention. Leukotrienes (LTA4, LTB4, LTC4, LTD4, and LTE4) are inflammatory lipid mediators. We performed patch clamp studies in Xenopus oocytes that co-expressed BK channel-forming (cbv1) and accessory β1 subunits cloned from rat cerebral artery myocytes. Leukotrienes were applied at 0.1 nm–10 μm to either leaflet of cell-free membranes at a wide range of [Ca2+]i and voltages. Only LTB4 reversibly increased BK steady-state activity (EC50 = 1 nm; Emax reached at 10 nm), with physiological [Ca2+]i and voltages favoring this activation. Homomeric cbv1 or cbv1-β2 channels were LTB4-resistant. Computational modeling predicted that LTB4 docked onto the cholane steroid-sensing site in the BK β1 transmembrane domain 2 (TM2). Co-application of LTB4 and cholane steroid did not further increase LTB4-induced activation. LTB4 failed to activate β1 subunit-containing channels when β1 carried T169A, A176S, or K179I within the docking site. Co-application of LTB4 with LTA4, LTC4, LTD4, or LTE4 suppressed LTB4-induced activation. Inactive leukotrienes docked onto a portion of the site, probably preventing tight docking of LTB4. In summary, we document the ability of two endogenous lipids from different chemical families to share their site of action on a channel accessory subunit. Thus, cross-talk between leukotrienes and cholane steroids might converge on regulation of smooth muscle contractility via BK β1. Moreover, the identification of LTB4 as a highly potent ligand for BK channels is critical for the future development of β1-specific BK channel activators.

Pattern recognition receptors contain a binding domain for pathogen-associated molecular patterns coupled to a signaling domain that regulates transcription of host immune response genes. Here, a novel mechanism that links pathogen recognition to channel activation and downstream signaling is proposed. We demonstrate that an intracellular sodium channel variant, human macrophage SCN5A, initiates signaling and transcription through a calcium-dependent isoform of adenylate cyclase, ADCY8, and the transcription factor, ATF2. Pharmacological stimulation with a channel agonist or treatment with cytoplasmic poly(I:C), a mimic of viral dsRNA, activates this pathway to regulate expression of SP100-related genes and interferon β. Electrophysiological analysis reveals that the SCN5A variant mediates nonselective outward currents and a small, but detectable, inward current. Intracellular poly(I:C) markedly augments an inward voltage-sensitive sodium current and inhibits the outward nonselective current. These results suggest human macrophage SCN5A initiates signaling in an innate immune pathway relevant to antiviral host defense. It is postulated that SCN5A is a novel pathogen sensor and that this pathway represents a channel activation-dependent mechanism of transcriptional regulation.

Conotoxins are venom peptides from cone snails with multiple disulfide bridges that provide a rigid structural scaffold. Typically acting on ion channels implicated in neurotransmission, conotoxins are of interest both as tools for pharmacological studies and as potential new medicines. δ-Conotoxins act by inhibiting inactivation of voltage-gated sodium channels (Nav). Their pharmacology has not been extensively studied because their highly hydrophobic character makes them difficult targets for chemical synthesis. Here we adopted an acid-cleavable solubility tag strategy that facilitated synthesis, purification, and directed disulfide bridge formation. Using this approach we readily produced three native δ-conotoxins from Conus consors plus two rationally designed hybrid peptides. We observed striking differences in Nav subtype selectivity across this group of compounds, which differ in primary structure at only three positions: 12, 23, and 25. Our results provide new insights into the structure-activity relationships underlying the Nav subtype selectivity of δ-conotoxins. Use of the acid-cleavable solubility tag strategy should facilitate synthesis of other hydrophobic peptides with complex disulfide bridge patterns.

Retaining β-exoglucosidases operate by a mechanism in which the key amino acids driving the glycosidic bond hydrolysis act as catalytic acid/base and nucleophile. Recently we designed two distinct classes of fluorescent cyclophellitol-type activity-based probes (ABPs) that exploit this mechanism to covalently modify the nucleophile of retaining β-glucosidases. Whereas β-epoxide ABPs require a protonated acid/base for irreversible inhibition of retaining β-glucosidases, β-aziridine ABPs do not. Here we describe a novel sensitive method to identify both catalytic residues of retaining β-glucosidases by the combined use of cyclophellitol β-epoxide- and β-aziridine ABPs. In this approach putative catalytic residues are first substituted to noncarboxylic amino acids such as glycine or glutamine through site-directed mutagenesis. Next, the acid/base and nucleophile can be identified via classical sodium azide-mediated rescue of mutants thereof. Selective labeling with fluorescent β-aziridine but not β-epoxide ABPs identifies the acid/base residue in mutagenized enzyme, as only the β-aziridine ABP can bind in its absence. The Absence of the nucleophile abolishes any ABP labeling. We validated the method by using the retaining β-glucosidase GBA (CAZy glycosylhydrolase family GH30) and then applied it to non-homologous (putative) retaining β-glucosidases categorized in GH1 and GH116: GBA2, GBA3, and LPH. The described method is highly sensitive, requiring only femtomoles (nanograms) of ABP-labeled enzymes.

Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3β (GSK3β) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3β by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3β and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3β, indicating that NO may mediate SNP stimulation of GSK3β. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3β by activation of Src, Pyk2, Akt, and ERK; GSK3β inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3β by SNP ameliorates kidney injury induced by diabetes.

Myocardin-related transcription factor A (MRTF-A/MAL/MKL1/BSAC) regulates the expression of serum-response factor (SRF)-dependent target genes in response to the Rho-actin signaling pathway. Overexpression or activation of MRTF-A affects shape, migration, and invasion of cells and contributes to human malignancies, including cancer. In this study, we report that inhibition of arginyltransferase 1 (ATE1), an enzyme mediating post-transcriptional protein arginylation, is sufficient to increase MRTF-A activity in MCF-7 human breast carcinoma cells independently of external growth factor stimuli. In addition, silencing or inhibiting ATE1 disrupted E-cadherin-mediated cell-cell contacts, enhanced formation of actin-rich protrusions, and increased the number of focal adhesions, subsequently leading to elevated chemotactic migration. Although arginylated actin did not differentially affect MRTF-A, a rapid loss of E-cadherin and F-actin reorganization preceded MRTF-A activation upon ATE1 inhibition. Conversely, ectopic ATE1 expression was sufficient to render MRTF-A inactive, both in resting cells and in cells with exogenously activated RhoA-actin pathways. In this study, we provide a critical link between protein arginylation and MRTF-A activity and place ATE1 upstream of myocardin-related transcription factor.

Factor VIIa (FVIIa) is a trypsin-like protease that plays an important role in initiating blood coagulation. Very limited structural information is available for the free, inactive form of FVIIa that circulates in the blood prior to vascular injury and the molecular details of its activity enhancement remain elusive. Here we have applied hydrogen/deuterium exchange mass spectrometry coupled to electron transfer dissociation to pinpoint individual residues in the heavy chain of FVIIa whose conformation and/or local interaction pattern changes when the enzyme transitions to the active form, as induced either by its cofactor tissue factor or a covalent active site inhibitor. Identified regulatory residues are situated at key sites across one continuous surface of the protease domain spanning the TF-binding helix across the activation pocket to the calcium binding site and are embedded in elements of secondary structure and at the base of flexible loops. Thus these residues are optimally positioned to mediate crosstalk between functional sites in FVIIa, particularly the cofactor binding site and the active site. Our results unambiguously show that the conformational allosteric activation signal extends to the EGF1 domain in the light chain of FVIIa, underscoring a remarkable intra- and interdomain allosteric regulation of this trypsin-like protease.

SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein.

SIRT1, a class III histone deacetylase, protects neurons in various models of neurodegenerative diseases. We previously described that neuroprotection by SIRT1 is independent of its catalytic activity. To elucidate how SIRT1 protects neurons, we performed a mass spectrometric screen to find SIRT1-interacting proteins. One of the proteins identified was JAZ (Znf346), a member of a new class of Cys-2–His-2 zinc finger proteins. To investigate the significance of JAZ in the regulation of neuronal survival, we overexpressed it in neurons. We found that JAZ protects cerebellar granule neurons against potassium deprivation-induced death and cortical neurons from death resulting from oxidative stress. JAZ also protects neurons against toxicity induced by mutant huntingtin and mutant ataxin-1 expression. Although expression of endogenous JAZ does not change in neurons primed to die, knockdown of its expression promotes death of otherwise healthy neurons. In contrast to its protective effect in neurons, overexpression of JAZ in different cell lines promotes death. We find that JAZ suppresses cell cycle progression, thereby explaining its contrasting effect in postmitotic neurons versus proliferating cell lines. Although not affecting the expression of several cyclins, overexpression of JAZ stimulates expression of p21 (WAF1/CIP1), a cell cycle inhibitor known to have neuroprotective effects. Results of chromatin immunoprecipitation and transcriptional assays indicate that the stimulatory effect of JAZ on p21 expression is mediated at the transcriptional level. Furthermore, knockdown of p21 expression inhibits the neuroprotective effect of JAZ. Together, our results suggest that JAZ protects neurons by inhibiting cell cycle re-entry through the transcriptional stimulation of p21 expression.

Lipoproteins can induce complement activation resulting in opsonization and binding of these complexes to complement receptors. We investigated the binding of opsonized native LDL and acetylated LDL (acLDL) to the complement receptor 1 (CR1). Binding of complement factors C3b, IgM, C1q, mannose-binding lectin (MBL), and properdin to LDL and acLDL were investigated by ELISA. Subsequent binding of opsonized LDL and acLDL to CR1 on CR1-transfected Chinese Hamster Ovarian cells (CHO-CR1) was tested by flow cytometry. Both native LDL and acLDL induced complement activation with subsequent C3b opsonization upon incubation with normal human serum. Opsonized LDL and acLDL bound to CR1. Binding to CHO-CR1 was reduced by EDTA, whereas MgEGTA only reduced the binding of opsonized LDL, but not of acLDL suggesting involvement of the alternative pathway in the binding of acLDL to CR1. In vitro incubations showed that LDL bound C1q, whereas acLDL bound to C1q, IgM, and properdin. MBL did neither bind to LDL nor to acLDL. The relevance of these findings was demonstrated by the fact that ex vivo up-regulation of CR1 on leukocytes was accompanied by a concomitant increased binding of apolipoprotein B-containing lipoproteins to leukocytes without changes in LDL-receptor expression. In conclusion, CR1 is able to bind opsonized native LDL and acLDL. Binding of LDL to CR1 is mediated via the classical pathway, whereas binding of acLDL is mediated via both the classical and alternative pathways. Binding of lipoproteins to CR1 may be of clinical relevance due to the ubiquitous cellular distribution of CR1.

The RTS1 gene encodes a subunit of the PP2A phosphatase that regulates cell cycle progression. Ace2 and Swi5 are cell cycle-regulated transcription factors, and we recently showed that phosphorylation of Ace2 and Swi5 is altered in an rts1 mutant. Here we examine expression of Ace2 and Swi5 target genes and find that an rts1 mutation markedly reduces expression of the HO gene. The decreased HO expression in an rts1 mutant is significantly restored by an additional ace2 mutation, a surprising result because HO is normally activated by Swi5 but not by Ace2. Ace2 normally accumulates only in daughter cells, and only activates transcription in daughters. However, in an rts1 mutant, Ace2 is present in both mother and daughter cells. One of the genes activated by Ace2 is ASH1, a protein that normally accumulates mostly in daughter cells; Ash1 is a transcriptional repressor, and it blocks HO expression in daughters. We show that in the rts1 mutant, Ace2 accumulation in mother cells results in Ash1 expression in mothers, and the Ash1 can now repress HO expression in mothers.

Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening.

♦ See referenced article, J. Biol. Chem. 2014, 289, 35438–35454 When activated by temperature or voltage, the transient receptor potential melastatin 8 (TRPM8) channel conducts monovalent and calcium ions in a particular set of skin sensory neurons. However, how temperature and voltage influence the conductance of the channel is unclear. In this Paper of the Week, a team led by Ramon Latorre and Osvaldo Alvarez at the University of Valparaíso in Chile carried out a series of analyses on TRPM8. They found that temperature on its own can drive conformational rearrangements to open the channel and that there isn't any dependence on voltage for the opening to occur. Voltage, on the other hand, is a partial activator of the channel at very high temperatures. The channel closes in steps that are unaffected by voltage. The investigators suggest an allosteric model for the opening and closing of TRPM8. They say, “This kind of model is based on the idea that voltage and temperature sensors are structurally different modules that can act independently from one another.” jbc;289/51/35455/FU1F1FU1 TRPM8 responds to temperature and voltage.

Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/β-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/β-catenin, where the flavonoid acts downstream of β-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/β-catenin and should be further investigated as a potential novel anti-tumoral agent.

The 5 S rRNA gene-specific transcription factor IIIA (TFIIIA) interacts with the small ubiquitin-like modifier (SUMO) E3 ligase PIAS2b and with one of its targets, the transcriptional corepressor, XCtBP. PIAS2b is restricted to the cytoplasm of Xenopus oocytes but relocates to the nucleus immediately after fertilization. Following the midblastula transition, PIAS2b and XCtBP are present on oocyte-type, but not somatic-type, 5 S rRNA genes up through the neurula stage, as is a limiting amount of TFIIIA. Histone H3 methylation, coincident with the binding of XCtBP, also occurs exclusively on the oocyte-type genes. Immunohistochemical staining of embryos confirms the occupancy of a subset of the oocyte-type genes by TFIIIA that become positioned at the nuclear periphery shortly after the midblastula transition. Inhibition of SUMOylation activity relieves repression of oocyte-type 5 S rRNA genes and is correlated with a decrease in methylation of H3K9 and H3K27 and disruption of subnuclear localization. These results reveal a novel function for TFIIIA as a negative regulator that recruits histone modification activity through the CtBP repressor complex exclusively to the oocyte-type 5 S rRNA genes, leading to their terminal repression.

The G protein-coupled light-sensitive receptor melanopsin is involved in non-image-forming light responses including circadian timing. The predicted secondary structure of melanopsin indicates a long cytoplasmic tail with many potential phosphorylation sites. Using bioinformatics, we identified a number of amino acids with a high probability of being phosphorylated. We generated antibodies against melanopsin phosphorylated at Ser-381 and Ser-398, respectively. The antibody specificity was verified by immunoblotting and immunohistochemical staining of HEK-293 cells expressing rat melanopsin mutated in Ser-381 or Ser-398. Using the antibody recognizing phospho-Ser-381 melanopsin, we demonstrated by immunoblotting and immunohistochemical staining in HEK-293 cells expressing rat melanopsin that the receptor is phosphorylated in this position during the dark and dephosphorylated when light is turned on. On the contrary, we found that melanopsin at Ser-398 was unphosphorylated in the dark and became phosphorylated after light stimulation. The light-induced changes in phosphorylation at both Ser-381 and Ser-398 were rapid and lasted throughout the 4-h experimental period. Furthermore, phosphorylation at Ser-381 and Ser-398 was independent of each other. The changes in phosphorylation were confirmed in vivo by immunohistochemical staining of rat retinas during light and dark. We further demonstrated that mutation of Ser-381 and Ser-398 in melanopsin-expressing HEK-293 cells affected the light-induced Ca2+ response, which was significantly reduced as compared with wild type. Examining the light-evoked Ca2+ response in a melanopsin Ser-381 plus Ser-398 double mutant provided evidence that the phosphorylation events were independent.

Epigenetic enzymes modulate signal transduction pathways in different biological contexts. We reasoned that epigenetic regulators might modulate the Hedgehog (HH) signaling pathway, a main driver of cell proliferation in various cancers including medulloblastoma. To test this hypothesis, we performed an unbiased small-molecule screen utilizing an HH-dependent reporter cell line (Light2 cells). We incubated Light2 cells with small molecules targeting different epigenetic modulators and identified four histone deacetylase inhibitors and a bromodomain and extra terminal domain (BET) protein inhibitor (I-BET151) that attenuate HH activity. I-BET151 was also able to inhibit the expression of HH target genes in Sufu−/− mouse embryonic fibroblasts, in which constitutive Gli activity is activated in a Smoothened (Smo)-independent fashion, consistent with it acting downstream of Smo. Knockdown of Brd4 (which encodes one of the BET proteins) phenocopies I-BET151 treatment, suggesting that Brd4 is a regulator of the HH signaling pathway. Consistent with this suggestion, Brd4 associates with the proximal promoter region of the Gli1 locus, and does so in a manner that can be reversed by I-BET151. Importantly, I-BET151 also suppressed the HH activity-dependent growth of medulloblastoma cells, in vitro and in vivo. These studies suggest that BET protein modulation may be an attractive therapeutic strategy for attenuating the growth of HH-dependent cancers, such as medulloblastoma.

The transcription factor Hes3 is a component of a signaling pathway that supports the growth of neural stem cells with profound consequences in neurodegenerative disease models. Here we explored whether Hes3 also regulates pancreatic islet cells. We showed that Hes3 is expressed in human and rodent pancreatic islets. In mouse islets it co-localizes with alpha and beta cell markers. We employed the mouse insulinoma cell line MIN6 to perform in vitro characterization and functional studies in conditions known to modulate Hes3 based upon our previous work using neural stem cell cultures. In these conditions, cells showed elevated Hes3 expression and nuclear localization, grew efficiently, and showed higher evoked insulin release responses, compared with serum-containing conditions. They also exhibited higher expression of the transcription factor Pdx1 and insulin. Furthermore, they were responsive to pharmacological treatments with the GLP-1 analog Exendin-4, which increased nuclear Hes3 localization. We employed a transfection approach to address specific functions of Hes3. Hes3 RNA interference opposed cell growth and affected gene expression as revealed by DNA microarrays. Western blotting and PCR approaches specifically showed that Hes3 RNA interference opposes the expression of Pdx1 and insulin. Hes3 overexpression (using a Hes3-GFP fusion construct) confirmed a role of Hes3 in regulating Pdx1 expression. Hes3 RNA interference reduced evoked insulin release. Mice lacking Hes3 exhibited increased islet damage by streptozotocin. These data suggest roles of Hes3 in pancreatic islet function.

Pyramidal neurons in the mammalian forebrain receive their synaptic inputs through their dendritic trees, and dendritic spines are the sites of most excitatory synapses. Dendritic spine structure is important for brain development and plasticity. Kalirin-7 is a guanine nucleotide-exchange factor for the small GTPase Rac1 and is a critical regulator of dendritic spine remodeling. The subcellular localization of kalirin-7 is thought to be important for regulating its function in neurons. A yeast two-hybrid screen has identified the adaptor protein X11α as an interacting partner of kalirin-7. Here, we show that kalirin-7 and X11α form a complex in the brain, and this interaction is mediated by the C terminus of kalirin-7. Kalirin-7 and X11α co-localize at excitatory synapses in cultured cortical neurons. Using time-lapse imaging of fluorescence recovery after photobleaching, we show that X11α is present in a mobile fraction of the postsynaptic density. X11α also localizes to Golgi outposts in dendrites, and its overexpression induces the removal of kalirin-7 from spines and accumulation of kalirin-7 in Golgi outposts. In addition, neurons overexpressing X11α displayed thinner spines. These data support a novel mechanism of regulation of kalirin-7 localization and function in dendrites, providing insight into signaling pathways underlying neuronal plasticity. Dissecting the molecular mechanisms of synaptic structural plasticity will improve our understanding of neuropsychiatric and neurodegenerative disorders, as kalirin-7 has been associated with schizophrenia and Alzheimer disease.

Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside of this motif have a limited contribution to binding free energy. For mouse MSI1, recognition is determined by the first of the two RRM domains. The second RRM adds affinity but does not contribute to binding specificity. In contrast, the recognition element for Drosophila MSI is more extensive than the mouse homolog, suggesting functional divergence. The short nature of the binding determinant suggests that protein-RNA affinity alone is insufficient to drive target selection by MSI family proteins.

In eukaryotes combinatorial activation of transcription is an important component of gene regulation. In the budding yeast Saccharomyces cerevisiae, Adr1-Cat8 and Adr1-Oaf1/Pip2 are pairs of activators that act together to regulate two diverse sets of genes. Transcription activation of both sets is regulated positively by the yeast AMP-activated protein kinase homolog, Snf1, in response to low glucose or the presence of a non-fermentable carbon source and negatively by two redundant 14-3-3 isoforms, Bmh1 and Bmh2. Bmh regulates the function of these pairs at a post-promoter binding step by direct binding to Adr1. However, how Bmh regulates transcription after activator binding remains unknown. In the present study we analyzed Bmh-mediated regulation of two sets of genes activated independently by these pairs of activators. We report that Bmh inhibits mRNA synthesis when the second activator is absent. Using gene fusions we show that Bmh binding to the Adr1 regulatory domain inhibits an Adr1 activation domain but not a heterologous activation domain or artificially recruited Mediator, consistent with Bmh acting at a step in transcription downstream of activator binding. Bmh inhibits the assembly and the function of a preinitiation complex (PIC). Gene expression studies suggest that Bmh regulates Adr1 activity through the coactivators Mediator and Swi/Snf. Mediator recruitment appeared to occur normally, but PIC formation and function were defective, suggesting that Bmh inhibits a step between Mediator recruitment and PIC activation.

We found that after stimulation for a few hours, memory but not naive CD4+ T cells produced a large amount of IFN-γ; however, the mechanism of rapid response of memory CD4+ T cells remains undefined. We compared the expression of transcription factors in resting or activated naive and memory CD4+ T cells and found that T-bet, but not pSTAT-1 or pSTAT-4, was highly expressed in resting memory CD4+ T cells and that phenotypic characteristics of T-bet+CD4+ T cells were CD45RAlowCD62Llow CCR7low. After short-term stimulation, purified memory CD4+ T cells rapidly produced effector cytokines that were closely associated with the pre-existence of T-bet. By contrast, resting naive CD4+ T cells did not express T-bet, and they produced cytokines only after sustained stimulation. Our further studies indicated that T-bet was expressed in the nuclei of resting memory CD4+ T cells, which might have important implications for rapid IFN-γ production. Our results indicate that the pre-existence and nuclear mobilization of T-bet in resting memory CD4+ T cells might be a possible transcriptional mechanism for rapid production of cytokines by human memory CD4+ T cells.

Nitroxyl (HNO), the protonated one-electron reduction product of NO, remains an enigmatic reactive nitrogen species. Its chemical reactivity and biological activity are still not completely understood. HNO donors show biological effects different from NO donors. Although HNO reactivity with molecular oxygen is described in the literature, the product of this reaction has not yet been unambiguously identified. Here we report that the decomposition of HNO donors under aerobic conditions in aqueous solutions at physiological pH leads to the formation of peroxynitrite (ONOO−) as a major intermediate. We have specifically detected and quantified ONOO− with the aid of boronate probes, e.g. coumarin-7-boronic acid or 4-boronobenzyl derivative of fluorescein methyl ester. In addition to the major phenolic products, peroxynitrite-specific minor products of oxidation of boronate probes were detected under these conditions. Using the competition kinetics method and a set of HNO scavengers, the value of the second order rate constant of the HNO reaction with oxygen (k = 1.8 × 104 m−1 s−1) was determined. The rate constant (k = 2 × 104 m−1 s−1) was also determined using kinetic simulations. The kinetic parameters of the reactions of HNO with selected thiols, including cysteine, dithiothreitol, N-acetylcysteine, captopril, bovine and human serum albumins, and hydrogen sulfide, are reported. Biological and cardiovascular implications of nitroxyl reactions are discussed.

IL-1α and β are key players in the innate immune system. The secretion of these cytokines by dendritic cells (DC) is integral to the development of proinflammatory responses. These cytokines are not secreted via the classical secretory pathway. Instead, 2 independent processes are required; an initial signal to induce up-regulation of the precursor pro-IL-1α and -β, and a second signal to drive cleavage and consequent secretion. Pro-IL-1α and -β are both cytosolic and thus, are potentially subject to post-translational modifications. These modifications may, in turn, have a functional outcome in the context of IL-1α and -β secretion and hence inflammation. We report here that IL-1α and -β were degraded intracellularly in murine bone marrow-derived DC and that this degradation was dependent on active cellular processes. In addition, we demonstrate that degradation was ablated when the proteasome was inhibited, whereas autophagy did not appear to play a major role. Furthermore, inhibition of the proteasome led to an accumulation of polyubiquitinated IL-1α and -β, indicating that IL-1α and -β were polyubiquitinated prior to proteasomal degradation. Finally, our investigations suggest that polyubiquitination and proteasomal degradation are not continuous processes but instead are up-regulated following DC activation. Overall, these data highlight that IL-1α and -β polyubiquitination and proteasomal degradation are central mechanisms in the regulation of intracellular IL-1 levels in DC.

Pancreas transcription factor 1a (PTF1a) plays a crucial role in the early development of the pancreas and in the maintenance of the acinar cell phenotype. Several transcriptional mechanisms regulating expression of PTF1a have been identified. However, regulation of PTF1a protein stability and degradation is still unexplored. Here, we report that inhibition of proteasome leads to elevated levels of PTF1a and to the existence of polyubiquitinated forms of PTF1a. We used the Sos recruitment system, an alternative two-hybrid system method to detect protein-protein interactions in the cytoplasm and to map the interactome of PTF1a. We identified TRIP12 (thyroid hormone receptor-interacting protein 12), an E3 ubiquitin-protein ligase as a new partner of PTF1a. We confirmed PTF1a/TRIP12 interaction in acinar cell lines and in co-transfected HEK-293T cells. The protein stability of PTF1a is significantly increased upon decreased expression of TRIP12. It is reduced upon overexpression of TRIP12 but not a catalytically inactive TRIP12-C1959A mutant. We identified a region of TRIP12 required for interaction and identified lysine 312 of PTF1a as essential for proteasomal degradation. We also demonstrate that TRIP12 down-regulates PTF1a transcriptional and antiproliferative activities. Our data suggest that an increase in TRIP12 expression can play a part in PTF1a down-regulation and indicate that PTF1a/TRIP12 functional interaction may regulate pancreatic epithelial cell homeostasis.

Neuropeptidases specialize in the hydrolysis of the small bioactive peptides that play a variety of signaling roles in the nervous and endocrine systems. One neuropeptidase, neurolysin, helps control the levels of the dopaminergic circuit modulator neurotensin and is a member of a fold group that includes the antihypertensive target angiotensin converting enzyme. We report the discovery of a potent inhibitor that, unexpectedly, binds away from the enzyme catalytic site. The location of the bound inhibitor suggests it disrupts activity by preventing a hinge-like motion associated with substrate binding and catalysis. In support of this model, the inhibition kinetics are mixed, with both noncompetitive and competitive components, and fluorescence polarization shows directly that the inhibitor reverses a substrate-associated conformational change. This new type of inhibition may have widespread utility in targeting neuropeptidases.

Surface glycan switching is often observed when micro-organisms transition between different biotic and abiotic niches, including biofilms, although the advantages of this switching to the organism are not well understood. Bacillus cereus grown in a biofilm-inducing medium has been shown to synthesize an unusual cell wall polysaccharide composed of the repeating subunit →6)Gal(α1–2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1–6)GlcNAc(β1→, where galactose is linked to the hydroxyglutarate moiety of FucNAc-4-amido-(2)-hydroxyglutarate. The molecular mechanism involved in attaching 2-hydroxyglutarate to 4-amino-FucNAc has not been determined. Here, we show two genes in B. cereus ATCC 14579 encoding enzymes involved in the synthesis of UDP-FucNAc-4-amido-(2)-oxoglutarate (UDP-Yelosamine), a modified UDP-sugar not previously reported to exist. Using mass spectrometry and real time NMR spectroscopy, we show that Bc5273 encodes a C4″-aminotransferase (herein referred to as Pat) that, in the presence of pyridoxal phosphate, transfers the primary amino group of l-Glu to C-4″ of UDP-4-keto-6-deoxy-d-GlcNAc to form UDP-4-amino-FucNAc and 2-oxoglutarate. Pat also converts 4-keto-xylose, 4-keto-glucose, and 4-keto-2-acetamido-altrose to their corresponding UDP-4-amino-sugars. Bc5272 encodes a carboxylate-amine ligase (herein referred as Pyl) that, in the presence of ATP and Mg(II), adds 2-oxoglutarate to the 4-amino moiety of UDP-4-amino-FucNAc to form UDP-Yelosamine and ADP. Pyl is also able to ligate 2-oxoglutarate to other 4-amino-sugar derivatives to form UDP-Yelose, UDP-Solosamine, and UDP-Aravonose. Characterizing the metabolic pathways involved in the formation of modified nucleotide sugars provides a basis for understanding some of the mechanisms used by bacteria to modify or alter their cell surface polysaccharides in response to changing growth and environmental challenges.

A growing body of work has shown that the highly homologous T-box transcription factors TBX2 and TBX3 play critical but distinct roles in embryonic development and cancer progression. For example, TBX2 and TBX3 are up-regulated in several cancers and recent evidence suggests that whereas TBX2 functions as a pro-proliferative factor, TBX3 inhibits cell proliferation but promotes cancer cell migration and invasion. While the molecular mechanisms regulating these functions of TBX2 and TBX3 are poorly understood we recently reported that the TGF-β1 signaling pathway up-regulates TBX3 expression to mediate, in part, its well described anti-proliferative and pro-migratory roles. The TBX3 targets responsible for these functions were however not identified. Here we reveal for the first time that the TGF-β1 signaling pathway represses TBX2 transcriptionally and we provide a detailed mechanism to show that this is mediated by TBX3. Furthermore, we implicate the down-regulation of TBX2 in the anti-proliferative function of the TGF-β1-TBX3 axis. These findings have important implications for our understanding of the regulation of TBX2 and TBX3 and shed light on the mechanisms involved in the anti-proliferative and pro-migratory roles of TGF-β1.

The chemical structures of the unusual hopanoid-containing lipid A samples of the lipopolysaccharides (LPS) from three strains of Bradyrhizobium (slow-growing rhizobia) have been established. They differed considerably from other Gram-negative bacteria in regards to the backbone structure, the number of ester-linked long chain hydroxylated fatty acids, as well as the presence of a tertiary residue that consisted of at least one molecule of carboxyl-bacteriohopanediol or its 2-methyl derivative. The structural details of this type of lipid A were established using one- and two-dimensional NMR spectroscopy, chemical composition analyses, and mass spectrometry techniques (electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry and MALDI-TOF-MS). In these lipid A samples the glucosamine disaccharide characteristic for enterobacterial lipid A was replaced by a 2,3-diamino-2,3-dideoxy-d-glucopyranosyl-(GlcpN3N) disaccharide, deprived of phosphate residues, and substituted by an α-d-Manp-(1→6)-α-d-Manp disaccharide substituting C-4′ of the non-reducing (distal) GlcpN3N, and one residue of galacturonic acid (d-GalpA) α-(1→1)-linked to the reducing (proximal) amino sugar residue. Amide-linked 12:0(3-OH) and 14:0(3-OH) were identified. Some hydroxy groups of these fatty acids were further esterified by long (ω-1)-hydroxylated fatty acids comprising 26–34 carbon atoms. As confirmed by mass spectrometry techniques, these long chain fatty acids could form two or three acyloxyacyl residues. The triterpenoid derivatives were identified as 34-carboxyl-bacteriohopane-32,33-diol and 34-carboxyl-2β-methyl-bacteriohopane-32,33-diol and were covalently linked to the (ω-1)-hydroxy group of very long chain fatty acid in bradyrhizobial lipid A. Bradyrhizobium japonicum possessed lipid A species with two hopanoid residues.

Recently, the structure of YidC2 from Bacillus halodurans revealed that the conserved positively charged residue within transmembrane segment one (at position 72) is located in a hydrophilic groove that is embedded in the inner leaflet of the lipid bilayer. The arginine residue was essential for the Bacillus subtilis SpoIIIJ (YidC1) to insert MifM and to complement a SpoIIIJ mutant strain. Here, we investigated the importance of the conserved positively charged residue for the function of the Escherichia coli YidC, Streptococcus mutans YidC2, and the chloroplast Arabidopsis thaliana Alb3. Like the Gram-positive B. subtilis SpoIIIJ, the conserved arginine was required for functioning of the Gram-positive S. mutans YidC2 and was necessary to complement the E. coli YidC depletion strain and to promote insertion of a YidC-dependent membrane protein synthesized with one but not two hydrophobic segments. In contrast, the conserved positively charged residue was not required for the E. coli YidC or the A. thaliana Alb3 to functionally complement the E. coli YidC depletion strain or to promote insertion of YidC-dependent membrane proteins. Our results also show that the C-terminal half of the helical hairpin structure in cytoplasmic loop C1 is important for the activity of YidC because various deletions in the region either eliminate or impair YidC function. The results here underscore the importance of the cytoplasmic hairpin region for YidC and show that the arginine is critical for the tested Gram-positive YidC homolog but is not essential for the tested Gram-negative and chloroplast YidC homologs.