• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources


Journal of Experimental Medicine, The

Pancreatic cancer is an aggressively metastatic cancer with a high mortality rate, but the mechanisms underlying this aggression are not yet fully understood. In this issue, Wu...

The developmental relationship between monocytes, dendritic cells (DCs), and macrophages has been well defined in mice, but human DC development is less well understood and has been hampered by...

Variants in triggering receptor expressed on myeloid cells 2 (TREM2) confer high risk for Alzheimer’s disease (AD) and other neurodegenerative diseases. However, the cell types and mechanisms underlying TREM2’s involvement in neurodegeneration remain to be established. Here, we report that TREM2 is up-regulated on myeloid cells surrounding amyloid deposits in AD mouse models and human AD tissue. TREM2 was detected on CD45hiLy6C+ myeloid cells, but not on P2RY12+ parenchymal microglia. In AD mice deficient for TREM2, the CD45hiLy6C+ macrophages are virtually eliminated, resulting in reduced inflammation and ameliorated amyloid and tau pathologies. These data suggest a functionally important role for TREM2+ macrophages in AD pathogenesis and an unexpected, detrimental role of TREM2 in AD pathology. These findings have direct implications for future development of TREM2-targeted therapeutics.

The fidelity of T cell immunity depends greatly on coupling T cell receptor signaling with specific T cell effector functions. Here, we describe a chromatin-based mechanism that enables integration of TCR specificity into definite T cell lineage commitment. Using natural killer T cells (iNKT cell) as a model of a T cell subset that differentiates in response to specific TCR signaling, we identified a key role of histone H3 lysine 27 trimethylation (H3K27me3) in coupling iNKT cell TCR specificity with the generation of iNKT cells. We found that the Zbtb16/PLZF gene promoter that drives iNKT cell differentiation possesses a bivalent chromatin state characterized by the simultaneous presence of negative and positive H3K27me3 and H3K4me3 modifications. Depletion of H3K27me3 at the Zbtb16/PLZF promoter leads to uncoupling of iNKT cell development from TCR specificity and is associated with accumulation of iNKT-like CD4+ cells that express a non-iNKT cell specific T cell repertoire. In turn, stabilization of H3K27me3 leads to a drastic reduction of the iNKT cell population. Our data suggest that H3K27me3 levels at the bivalent Zbtb16/PLZF gene define a threshold enabling precise coupling of TCR specificity to lineage commitment.

Failure of cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells to kill target cells by perforin (Prf)/granzyme (Gzm)-induced apoptosis causes severe immune dysregulation. In familial hemophagocytic lymphohistiocytosis, Prf-deficient infants suffer a fatal "cytokine storm" resulting from macrophage overactivation, but the link to failed target cell death is not understood. We show that prolonged target cell survival greatly amplifies the quanta of inflammatory cytokines secreted by CTLs/NK cells and that interferon- (IFN-) directly invokes the activation and secondary overproduction of proinflammatory IL-6 from naive macrophages. Furthermore, using live cell microscopy to visualize hundreds of synapses formed between wild-type, Prf-null, or GzmA/B-null CTLs/NK cells and their targets in real time, we show that hypersecretion of IL-2, TNF, IFN-, and various chemokines is linked to failed disengagement of Prf- or Gzm-deficient lymphocytes from their targets, with mean synapse time increased fivefold, from ~8 to >40 min. Surprisingly, the signal for detachment arose from the dying target cell and was caspase dependent, as delaying target cell death with various forms of caspase blockade also prevented their disengagement from fully competent CTLs/NK cells and caused cytokine hypersecretion. Our findings provide the cellular mechanism through which failed killing by lymphocytes causes systemic inflammation involving recruitment and activation of myeloid cells.

Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer’s disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether restored EAAT2 protein and function could benefit cognitive functions and pathology in APPSw,Ind mice, an animal model of AD. A transgenic mouse approach via crossing EAAT2 transgenic mice with APPSw,Ind. mice and a pharmacological approach using a novel EAAT2 translational activator, LDN/OSU-0212320, were conducted. Findings from both approaches demonstrated that restored EAAT2 protein function significantly improved cognitive functions, restored synaptic integrity, and reduced amyloid plaques. Importantly, the observed benefits were sustained one month after compound treatment cessation, suggesting that EAAT2 is a potential disease modifier with therapeutic potential for AD.

Pancreatic cancer has an extremely high mortality rate due to its aggressive metastatic nature. Resolving the underlying mechanisms will be crucial for treatment. Here, we found that overexpression of IL-17B receptor (IL-17RB) strongly correlated with postoperative metastasis and inversely correlated with progression-free survival in pancreatic cancer patients. Consistently, results from ex vivo experiments further validated that IL-17RB and its ligand, IL-17B, plays an essential role in pancreatic cancer metastasis and malignancy. Signals from IL-17B–IL-17RB activated CCL20/CXCL1/IL-8/TFF1 chemokine expressions via the ERK1/2 pathway to promote cancer cell invasion, macrophage and endothelial cell recruitment at primary sites, and cancer cell survival at distant organs. Treatment with a newly derived monoclonal antibody against IL-17RB blocked tumor metastasis and promoted survival in a mouse xenograft model. These findings not only illustrate a key mechanism underlying the highly aggressive characteristics of pancreatic cancer but also provide a practical approach to tackle this disease.

Evidence links chronic inflammation with cancer, but cellular mechanisms involved in this process remain unclear. We have demonstrated that in humans, inflammatory conditions that predispose to development of skin and colon tumors are associated with accumulation in tissues of CD33+S100A9+ cells, the phenotype typical for myeloid-derived suppressor cells in cancer or immature myeloid cells (IMCs) in tumor-free hosts. To identify the direct role of these cells in tumor development, we used S100A9 transgenic mice to create the conditions for topical accumulation of these cells in the skin in the absence of infection or tissue damage. These mice demonstrated accumulation of granulocytic IMCs in the skin upon topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in a dramatic increase in the formation of papillomas during epidermal carcinogenesis. The effect of IMCs on tumorigenesis was not associated with immune suppression, but with CCL4 (chemokine [C-C motif] ligand 4)-mediated recruitment of IL-17–producing CD4+ T cells. This chemokine was released by activated IMCs. Elimination of CD4+ T cells or blockade of CCL4 or IL-17 abrogated the increase in tumor formation caused by myeloid cells. Thus, this study implicates accumulation of IMCs as an initial step in facilitation of tumor formation, followed by the recruitment of CD4+ T cells.

NLR family apoptosis inhibitory proteins (NAIPs) belong to both the Nod-like receptor (NLR) and the inhibitor of apoptosis (IAP) families. NAIPs are known to form an inflammasome with NLRC4, but other in vivo functions remain unexplored. Using mice deficient for all NAIP paralogs (Naip1-6/), we show that NAIPs are key regulators of colorectal tumorigenesis. Naip1-6/ mice developed increased colorectal tumors, in an epithelial-intrinsic manner, in a model of colitis-associated cancer. Increased tumorigenesis, however, was not driven by an exacerbated inflammatory response. Instead, Naip1-6/ mice were protected from severe colitis and displayed increased antiapoptotic and proliferation-related gene expression. Naip1-6/ mice also displayed increased tumorigenesis in an inflammation-independent model of colorectal cancer. Moreover, Naip1-6/ mice, but not Nlrc4-null mice, displayed hyper-activation of STAT3 and failed to activate p53 18 h after carcinogen exposure. This suggests that NAIPs protect against tumor initiation in the colon by promoting the removal of carcinogen-elicited epithelium, likely in a NLRC4 inflammasome-independent manner. Collectively, we demonstrate a novel epithelial-intrinsic function of NAIPs in protecting the colonic epithelium against tumorigenesis.

In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34+ hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues.

Two subsets of conventional dendritic cells (cDCs) with distinct cell surface markers and functions exist in mouse and human. The two subsets of cDCs are specialized antigen-presenting cells that initiate T cell immunity and tolerance. In the mouse, a migratory cDC precursor (pre-CDC) originates from defined progenitors in the bone marrow (BM). Small numbers of short-lived pre-CDCs travel through the blood and replace cDCs in the peripheral organs, maintaining homeostasis of the highly dynamic cDC pool. However, the identity and distribution of the immediate precursor to human cDCs has not been defined. Using a tissue culture system that supports the development of human DCs, we identify a migratory precursor (hpre-CDC) that exists in human cord blood, BM, blood, and peripheral lymphoid organs. hpre-CDCs differ from premonocytes that are restricted to the BM. In contrast to earlier progenitors with greater developmental potential, the hpre-CDC is restricted to producing CD1c+ and CD141+ Clec9a+ cDCs. Studies in human volunteers demonstrate that hpre-CDCs are a dynamic population that increases in response to levels of circulating Flt3L.

NK-derived cytokines play important roles for natural killer (NK) function, but how the cytokines are regulated is poorly understood. CD160 is expressed on activated NK or T cells in humans but its function is unknown. We generated CD160-deficient mice to probe its function. Although CD160–/– mice showed no abnormalities in lymphocyte development, the control of NK-sensitive tumors was severely compromised in CD160–/– mice. Surprisingly, the cytotoxicity of NK cells was not impaired, but interferon- (IFN-) secretion by NK cells was markedly reduced in CD160–/– mice. Functionally targeting CD160 signaling with a soluble CD160-Ig also impaired tumor control and IFN- production, suggesting an active role of CD160 signaling. Using reciprocal bone marrow transfer and cell culture, we have identified the intrinsic role of CD160 on NK cells, as well as its receptor on non-NK cells, for regulating cytokine production. To demonstrate sufficiency of the CD160+ NK cell subset in controlling NK-dependent tumor growth, intratumoral transfer of the CD160+ NK fraction led to tumor regression in CD160–/– tumor-bearing mice, indicating demonstrable therapeutic potential for controlling early tumors. Therefore, CD160 is not only an important biomarker but also functionally controls cytokine production by NK cells.

Journal of Experimental Medicine RSS feed -- current issue
Journal of Experimental Medicine

Insight from Steven Leach

Insight from Frederic Geissmann