• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center
 

Member Resources

Publications

Journal of Experimental Medicine, The

The molecular dissection of the landscape of AML has been at the leading edge of cancer discovery, but the treatment of AML has remained largely unchanged. A defining feature...

T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke.


Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML.


RNA editing can increase RNA sequence variation without altering the DNA sequence. By comparing whole-genome and transcriptome sequence data of a rectal cancer, we found novel tumor-associated increase of RNA editing in ras homologue family member Q (RHOQ) transcripts. The adenosine-to-inosine (A-to-I) editing results in substitution of asparagine with serine at residue 136. We observed a higher level of the RHOQ RNA editing in tumor compared with normal tissue in colorectal cancer (CRC). The degree of RNA editing was associated with RhoQ protein activity in CRC cancer cell lines. RhoQ N136S amino acid substitution increased RhoQ activity, actin cytoskeletal reorganization, and invasion potential. KRAS mutation further increased the invasion potential of RhoQ N136S in vitro. Among CRC patients, recurrence was more frequently observed in patients with tumors having edited RHOQ transcripts and mutations in the KRAS gene. In summary, we show that RNA editing is another mechanism of sequence alteration that contributes to CRC progression.


Retention of lymphocytes in the intestinal mucosa requires specialized chemokine receptors and adhesion molecules. We find that both CD4+CD8+ and CD4+ T cells in the intestinal epithelium, as well as CD8+ T cells in the intestinal mucosa and mesenteric lymph nodes, express the cell adhesion molecule class I–restricted T cell–associated molecule (Crtam) upon activation, whereas the ligand of Crtam, cell adhesion molecule 1 (Cadm1), is expressed on gut CD103+DCs. Lack of Crtam–Cadm1 interactions in Crtam–/– and Cadm1–/– mice results in loss of CD4+CD8+ T cells, which arise from mucosal CD4+ T cells that acquire a CD8 lineage expression profile. After acute oral infection with Toxoplasma gondii, both WT and Crtam–/– mice mounted a robust TH1 response, but markedly fewer TH17 cells were present in the intestinal mucosa of Crtam–/– mice. The almost exclusive TH1 response in Crtam–/– mice resulted in more efficient control of intestinal T. gondii infection. Thus, Crtam–Cadm1 interactions have a major impact on the residency and maintenance of CD4+CD8+ T cells in the gut mucosa in the steady state. During pathogenic infection, Crtam–Cadm1 interactions regulate the dynamic equilibrium between newly formed CD4+ T cells and their retention in the gut, thereby shaping representation of disparate CD4+ T cell subsets and the overall quality of the CD4+ T cell response.


The transcription factor E4bp4 (Nfil3) is essential for natural killer (NK) cell production. Here, we show that E4bp4 is required at the NK lineage commitment point when NK progenitors develop from common lymphoid progenitors (CLPs) and that E4bp4 must be expressed at the CLP stage for differentiation toward the NK lineage to occur. To elucidate the mechanism by which E4bp4 promotes NK development, we identified a central core of transcription factors that can rescue NK production from E4bp4–/– progenitors, suggesting that they act downstream of E4bp4. Among these were Eomes and Id2, which are expressed later in development than E4bp4. E4bp4 binds directly to the regulatory regions of both Eomes and Id2, promoting their transcription. We propose that E4bp4 is required for commitment to the NK lineage and promotes NK development by directly regulating the expression of the downstream transcription factors Eomes and Id2.


Ectopic lymphoid tissue, such as bronchus-associated lymphoid tissue (BALT) in the lung, develops spontaneously at sites of chronic inflammation or during infection. The molecular mechanisms underlying the neogenesis of such tertiary lymphoid tissue are still poorly understood. We show that the type of inflammation-inducing pathogen determines which key factors are required for the formation and maturation of BALT. Thus, a single intranasal administration of the poxvirus modified vaccinia virus Ankara (MVA) is sufficient to induce highly organized BALT with densely packed B cell follicles containing a network of CXCL13-expressing follicular DCs (FDCs), as well as CXCL12-producing follicular stromal cells. In contrast, mice treated with P. aeruginosa (P.a.) develop BALT but B cell follicles lack FDCs while still harboring CXCL12-positive follicular stromal cells. Furthermore, in IL-17–deficient mice, P.a.-induced BALT largely lacks B cells as well as CXCL12-expressing stromal cells, and only loose infiltrates of T cells are present. We show that Toll-like receptor pathways are required for BALT induction by P.a., but not MVA, and provide evidence that IL-17 drives the differentiation of lung stroma toward podoplanin-positive CXCL12-expressing cells that allow follicle formation even in the absence of FDCs. Taken together, our results identify distinct pathogen-dependent induction and maturation pathways for BALT formation.


Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11–dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.


Langerhans cell histiocytosis (LCH) is a clonal disorder with elusive etiology, characterized by the accumulation of CD207+ dendritic cells (DCs) in inflammatory lesions. Recurrent BRAF-V600E mutations have been reported in LCH. In this study, lesions from 100 patients were genotyped, and 64% carried the BRAF-V600E mutation within infiltrating CD207+ DCs. BRAF-V600E expression in tissue DCs did not define specific clinical risk groups but was associated with increased risk of recurrence. Strikingly, we found that patients with active, high-risk LCH also carried BRAF-V600E in circulating CD11c+ and CD14+ fractions and in bone marrow (BM) CD34+ hematopoietic cell progenitors, whereas the mutation was restricted to lesional CD207+ DC in low-risk LCH patients. Importantly, BRAF-V600E expression in DCs was sufficient to drive LCH-like disease in mice. Consistent with our findings in humans, expression of BRAF-V600E in BM DC progenitors recapitulated many features of the human high-risk LCH, whereas BRAF-V600E expression in differentiated DCs more closely resembled low-risk LCH. We therefore propose classification of LCH as a myeloid neoplasia and hypothesize that high-risk LCH arises from somatic mutation of a hematopoietic progenitor, whereas low-risk disease arises from somatic mutation of tissue-restricted precursor DCs.


Sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) is critical for lymphocyte egress from lymphoid organs. Lymphocytes encounter low S1P concentrations near exit sites before transmigration, yet S1PR1 signaling is rapidly terminated after exposure to S1P. How lymphocytes maintain S1PR1 signaling in a low S1P environment near egress sites is unknown. Here we identify dynamin 2, an essential component of endocytosis, as a novel regulator of T cell egress. Mice with T cell–specific dynamin 2 deficiency had profound lymphopenia and impaired egress from lymphoid organs. Dynamin 2 deficiency caused impaired egress through regulation of S1PR1 signaling, and transgenic S1PR1 overexpression rescued egress in dynamin 2 knockout mice. In low S1P concentrations, dynamin 2 was essential for S1PR1 internalization, which enabled continuous S1PR1 signaling and promoted egress from both thymus and lymph nodes. In contrast, dynamin 2–deficient cells were only capable of a pulse of S1PR1 signaling, which was insufficient for egress. Our results suggest a possible mechanism by which T lymphocytes positioned at exit portals sense low S1P concentrations, promoting their egress into circulatory fluids.


Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) exhibits lymphoid, myeloid, and stem cell features and is associated with a poor prognosis. Whole genome sequencing of human ETP-ALL cases has identified recurrent mutations in signaling, histone modification, and hematopoietic development genes but it remains to be determined which of these abnormalities are sufficient to initiate leukemia. We show that activating mutations in the interleukin-7 receptor identified in human pediatric ETP-ALL cases are sufficient to generate ETP-ALL in mice transplanted with primitive transduced thymocytes from p19Arf–/– mice. The cellular mechanism by which these mutant receptors induce ETP-ALL is the block of thymocyte differentiation at the double negative 2 stage at which myeloid lineage and T lymphocyte developmental potential coexist. Analyses of samples from pediatric ETP-ALL cases and our murine ETP-ALL model show uniformly high levels of LMO2 expression, very low to undetectable levels of BCL11B expression, and a relative lack of activating NOTCH1 mutations. We report that pharmacological blockade of Jak–Stat signaling with ruxolitinib has significant antileukemic activity in this ETP-ALL model. This new murine model recapitulates several important cellular and molecular features of ETP-ALL and should be useful to further define novel therapeutic approaches for this aggressive leukemia.


Cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade with a monoclonal antibody yields durable responses in a subset of cancer patients and has been approved by the FDA as a standard therapy for late-stage melanoma. We recently identified inducible co-stimulator (ICOS) as a crucial player in the antitumor effects of CTLA-4 blockade. We now show that concomitant CTLA-4 blockade and ICOS engagement by tumor cell vaccines engineered to express ICOS ligand enhanced antitumor immune responses in both quantity and quality and significantly improved rejection of established melanoma and prostate cancer in mice. This study provides strong support for the development of combinatorial therapies incorporating anti–CTLA-4 and ICOS engagement.


Ewing’s sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)–associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase C, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.


Journal of Experimental Medicine RSS feed -- current issue
Journal of Experimental Medicine

Insight from Kimberly Stegmaier