• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center
 

Member Resources

Publications

Molecular Biology of the Cell

Molecular Cancer Research RSS feed -- current issue
Molecular Cancer Research

The dysregulation of proper transcriptional control is a major cause of developmental diseases and cancers. Polycomb proteins form chromatin-modifying complexes that transcriptionally silence genome regions in higher eukaryotes. The BCL6 corepressor (BCOR) complex comprises ring finger protein 1B (RNF2/RING1B), polycomb group ring finger 1 (PCGF1), and lysine-specific demethylase 2B (KDM2B) and is uniquely recruited to nonmethylated CpG islands, where it removes histone H3K36me2 and induces repressive histone H2A monoubiquitylation. Germline BCOR mutations have been detected in patients with oculofaciocardiodental and Lenz microphthalmia syndromes, which are inherited conditions. Recently, several variants of BCOR and BCOR-like 1 (BCORL1) chimeric fusion transcripts were reported in human cancers, including acute promyelocytic leukemia, bone sarcoma, and hepatocellular carcinoma. In addition, massively parallel sequencing has identified inactivating somatic BCOR and BCORL1 mutations in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia, medulloblastoma, and retinoblastoma. More importantly, patients with AML and MDS with BCOR mutations exhibit poor prognosis. This perspective highlights the detection of BCOR mutations and fusion transcripts of BCOR and BCORL1 and discusses their importance for diagnosing cancer subtypes and estimating the treatment responses of patients. Furthermore, this perspective proposes the need for additional functional studies to clarify the oncogenic mechanism by which BCOR and BCORL1 are disrupted in cancers, and how this may lead to the development of novel therapeutics. Mol Cancer Res; 12(4); 479–84. ©2014 AACR.


Evidence suggests that the catabolic process of macroautophagy (autophagy hereafter) can either suppress or promote cancer. The essential autophagy gene ATG6/BECN1 encoding the Beclin1 protein has been implicated as a haploinsufficient tumor suppressor in breast, ovarian, and prostate cancers. The proximity of BECN1 to the known breast and ovarian tumor suppressor breast cancer 1, early onset, BRCA1, on chromosome 17q21, has made this determination equivocal. Here, the mutational status of BECN1 was assessed in human tumor sequencing data from The Cancer Genome Atlas (TCGA) and other databases. Large deletions encompassing both BRCA1 and BECN1, and deletions of only BRCA1 but not BECN1, were found in breast and ovarian cancers, consistent with BRCA1 loss being a primary driver mutation in these cancers. Furthermore, there was no evidence for BECN1 mutation or loss in any other cancer, casting doubt on whether BECN1 is a tumor suppressor in most human cancers.

Implications: Contrary to previous reports, BECN1 is not significantly mutated in human cancer and not a tumor-suppressor gene, as originally thought.

Visual Overview: http://mcr.aacrjournals.org/content/early/2014/04/01/1541-7786.MCR-13-0614/F1.large.jpg. Mol Cancer Res; 12(4); 485–90. ©2014 AACR.


Aberrant activation of the Wnt/β-catenin signaling pathway is a critical event in advanced prostate cancer, but the genetic alterations that activate the Wnt signaling pathway in many other cancers are rarely observed in prostate cancer. Other molecular mechanisms that regulate the Wnt signaling pathway in prostate cancer remain to be identified. Here, it is demonstrated that KIF3a, a subunit of kinesin-II motor protein, functions as an agonist of the Wnt signaling pathway in prostate cancer. KIF3a is upregulated in the majority of human prostate cancer cell lines and primary tumor biopsies. The expression levels of KIF3a correlate with a higher Gleason score, tumor–node–metastasis stage, and metastatic status of prostate cancer. Moreover, exogenous expression of KIF3a promoted cell growth in the benign prostate cells, whereas silencing KIF3a in cancer cells decreased cell proliferation, anchorage-independent cell growth, and cell migration/invasion. Mechanistically, KIF3a increases CK1-dependent DVL2 phosphorylation and β-catenin activation in prostate cancer cells, leading to transactivation of the Wnt-signaling target genes such as cyclin D1, HEF1, and MMP9. These findings support the notion that upregulation of KIF3a is causal of aberrant activation of Wnt signaling in advanced prostate cancer through the KIF3a–DVL2–β-catenin axis.

Implications: Inactivation of KIF3a may improve survival of patients with advanced prostate cancer in which Wnt signaling is activated. Mol Cancer Res; 12(4); 491–503. ©2014 AACR.


More than 60% of patients who are diagnosed with epithelial ovarian cancer (EOC) present with extensive peritoneal carcinomatosis. EOC cells typically disseminate by shedding into the peritoneal fluid in which they survive as multicellular aggregates and then implant onto peritoneal surfaces. However, the mechanism that facilitates aggregation and implantation of EOC cells is poorly understood. The cell adhesion molecule P-cadherin has been reported to be induced during early progression of EOC and to promote tumor cell migration. In this study, P-cadherin not only promoted migration of EOC cells, but also facilitated the assembly of floating EOC cells into multicellular aggregates and inhibited anoikis in vitro. Furthermore, inhibiting P-cadherin by short hairpin RNAs (shRNA) or a neutralizing antibody prevented EOC cells from attaching to peritoneal mesothelial cells in vitro. In mouse intraperitoneal xenograft models of EOC, inhibition of P-cadherin decreased the aggregation and survival of floating tumor cells in ascites and reduced the number of tumor implants on peritoneal surfaces. These findings indicate that P-cadherin promotes intraperitoneal dissemination of EOC by facilitating tumor cell aggregation and tumor–peritoneum interactions in addition to promoting tumor cell migration.

Implications: Inhibiting P-cadherin blocks multiple key steps of EOC progression and has therapeutic potential. Mol Cancer Res; 12(4); 504–13. ©2014 AACR.


Despite the tremendous advances in the treatment of childhood kidney tumors, there remain subsets of pediatric renal tumors that continue to pose a therapeutic challenge, mainly malignant rhabdoid kidney tumors and nonosseous renal Ewing sarcoma. Children with advanced, metastatic, or relapsed disease have a poor disease-free survival rate. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. FAK has been found in other pediatric solid tumors and in adult renal cellular carcinoma, leading to the hypothesis that FAK contributes to pediatric kidney tumors and would affect cellular survival. In the current study, FAK was present and phosphorylated in pediatric kidney tumor specimens. Moreover, the effects of FAK inhibition upon G401 and SK-NEP-1 cell lines were examined using a number of parallel approaches to block FAK, including RNA interference and small-molecule FAK inhibitors. FAK inhibition resulted in decreased cellular survival, invasion and migration, and increased apoptosis. Furthermore, small-molecule inhibition of FAK led to decreased SK-NEP-1 xenograft growth in vivo. These data deepen the knowledge of the tumorigenic process in pediatric renal tumors, and provide desperately needed therapeutic strategies and targets for these rare, but difficult to treat, malignancies.

Implications: This study provides a fundamental understanding of tumorigenesis in difficult to treat renal tumors and provides an impetus for new avenues of research and potential for novel, targeted therapies. Mol Cancer Res; 12(4); 514–26. ©2014 AACR.


NR4A1 (Nur77, TR3) is an orphan nuclear receptor that is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity. RNA interference of NR4A1 expression in Panc-1 cells induced apoptosis and subsequent proteomic analysis revealed the induction of several markers of endoplasmic reticulum stress, including glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), and activating transcription factor-4 (ATF-4). Treatment of pancreatic cancer cells with the NR4A1 antagonist 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) gave similar results. Moreover, both NR4A1 knockdown and DIM-C-pPhOH induced reactive oxygen species (ROS), and induction of ROS and endoplasmic reticulum stress by these agents was attenuated after cotreatment with antioxidants. Manipulation of NR4A1 expression coupled with gene expression profiling identified a number of ROS metabolism transcripts regulated by NR4A1. Knockdown of one of these transcripts, thioredoxin domain containing 5 (TXNDC5), recapitulated the elevated ROS and endoplasmic reticulum stress; thus, demonstrating that NR4A1 regulates levels of endoplasmic reticulum stress and ROS in pancreatic cancer cells to facilitate cell proliferation and survival. Finally, inactivation of NR4A1 by knockdown or DIM-C-pPhOH decreased TXNDC5, resulting in activation of the ROS/endoplasmic reticulum stress and proapoptotic pathways.

Implications: The NR4A1 receptor is pro-oncogenic, regulates the ROS/endoplasmic reticulum stress pathways, and inactivation of the receptor represents a novel pathway for inducing cell death in pancreatic cancer. Mol Cancer Res; 12(4); 527–38. ©2014 AACR.


Kinesins are a superfamily of motor proteins and often deregulated in different cancers. However, the mechanism of their deregulation has been poorly understood. Through examining kinesin gene family expression in estrogen receptor (ER)-positive breast cancer cells, we found that estrogen stimulation of cancer cell proliferation involves a concerted regulation of specific kinesins. Estrogen strongly induces expression of 19 kinesin genes such as Kif4A/4B, Kif5A/5B, Kif10, Kif11, Kif15, Kif18A/18B, Kif20A/20B, Kif21, Kif23, Kif24, Kif25, and KifC1, whereas suppresses the expression of seven others, including Kif1A, Kif1C, Kif7, and KifC3. Interestingly, the bromodomain protein ANCCA/ATAD2, previously shown to be an estrogen-induced chromatin regulator, plays a crucial role in the up- and downregulation of kinesins by estrogen. Its overexpression drives estrogen-independent upregulation of specific kinesins. Mechanistically, ANCCA (AAA nuclear coregulator cancer associated) mediates E2-dependent recruitment of E2F and MLL1 histone methyltransferase at kinesin gene promoters for gene activation–associated H3K4me3 methylation. Importantly, elevated levels of Kif4A, Kif15, Kif20A, and Kif23 correlate with that of ANCCA in the tumors and with poor relapse-free survival of patients with ER-positive breast cancer. Their knockdown strongly impeded proliferation and induced apoptosis of both tamoxifen-sensitive and resistant cancer cells. Together, the study reveals ANCCA as a key mediator of kinesin family deregulation in breast cancer and the crucial role of multiple kinesins in growth and survival of the tumor cells.

Implications: These findings support the development of novel inhibitors of cancer-associated kinesins and their regulator ANCCA for effective treatment of cancers including tamoxifen-resistant breast cancers. Mol Cancer Res; 12(4); 539–49. ©2014 AACR.


Insensitivity to standard clinical interventions, including chemotherapy, radiotherapy, and tyrosine kinase inhibitor (TKI) treatment, remains a substantial hindrance towards improving the prognosis of patients with non–small cell lung cancer (NSCLC). The molecular mechanism of therapeutic resistance remains poorly understood. The TNF-like weak inducer of apoptosis (TWEAK)–FGF-inducible 14 (TNFRSF12A/Fn14) signaling axis is known to promote cancer cell survival via NF-B activation and the upregulation of prosurvival Bcl-2 family members. Here, a role was determined for TWEAK–Fn14 prosurvival signaling in NSCLC through the upregulation of myeloid cell leukemia sequence 1 (MCL1/Mcl-1). Mcl-1 expression significantly correlated with Fn14 expression, advanced NSCLC tumor stage, and poor patient prognosis in human primary NSCLC tumors. TWEAK stimulation of NSCLC cells induced NF-B–dependent Mcl-1 protein expression and conferred Mcl-1–dependent chemo- and radioresistance. Depletion of Mcl-1 via siRNA or pharmacologic inhibition of Mcl-1, using EU-5148, sensitized TWEAK-treated NSCLC cells to cisplatin- or radiation-mediated inhibition of cell survival. Moreover, EU-5148 inhibited cell survival across a panel of NSCLC cell lines. In contrast, inhibition of Bcl-2/Bcl-xL function had minimal effect on suppressing TWEAK-induced cell survival. Collectively, these results position TWEAK–Fn14 signaling through Mcl-1 as a significant mechanism for NSCLC tumor cell survival and open new therapeutic avenues to abrogate the high mortality rate seen in NSCLC.

Implications: The TWEAK–Fn14 signaling axis enhances lung cancer cell survival and therapeutic resistance through Mcl-1, positioning both TWEAK–Fn14 and Mcl-1 as therapeutic opportunities in lung cancer. Mol Cancer Res; 12(4); 550–9. ©2014 AACR.


The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non–small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with a histone deacetylase inhibitor or a DNA methyltransferase (DNMT) inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 reexpression led to substantial changes in the expression of CDH1, CDH3, EHF, and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts, indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development.

Implications: Inactivation of the SWI/SNF complex provides a novel mechanism to induce gene silencing during NSCLC development. Mol Cancer Res; 12(4); 560–70. ©2014 AACR.


Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide. The increasing amount of genomic information on human tumors and cell lines provides more biologic data to design preclinical studies. We and others previously reported whole-exome sequencing data of 106 HNSCC primary tumors. In 2012, high-throughput genomic data and pharmacologic profiling of anticancer drugs of hundreds of cancer cell lines were reported. Here, we compared the genomic data of 39 HNSCC cell lines with the genomic findings in 106 HNSCC tumors. Amplification of eight genes (PIK3CA, EGFR, CCND2, KDM5A, ERBB2, PMS1, FGFR1, and WHSCIL1) and deletion of five genes (CDKN2A, SMAD4, NOTCH2, NRAS, and TRIM33) were found in both HNSCC cell lines and tumors. Seventeen genes were only mutated in HNSCC cell lines (>10%), suggesting that these mutations may arise through immortalization in tissue culture. Conversely, 11 genes were only mutated in >10% of human HNSCC tumors. Several mutant genes in the EGF receptor (EGFR) pathway are shared both in cell lines and in tumors. Pharmacologic profiling of eight anticancer agents in six HNSCC cell lines suggested that PIK3CA mutation may serve as a predictive biomarker for the drugs targeting the EGFR/PI3K pathway. These findings suggest that a correlation of gene mutations between HNSCC cell lines and human tumors may be used to guide the selection of preclinical models for translational research.

Implications: These findings suggest that a correlation of gene mutations between HNSCC cell lines and human tumors may be used to guide the selection of preclinical models for translational research. Mol Cancer Res; 12(4); 571–82. ©2014 AACR.


Activation of c-Myc plays a decisive role in the development of many human cancers. As a transcription factor, c-Myc facilitates cell growth and proliferation by directly transcribing a multitude of targets, including rRNAs and ribosome proteins. However, how to elucidate the deregulation of rRNAs and ribosome proteins driven by c-Myc in cancer remains a significant challenge and thus warrants close investigation. In this report, a crucial role for the HSPC111 (NOP16) multiprotein complex in governing ribosomal biogenesis and tumor growth was determined. It was discovered that enhanced HSPC111 expression paralleled the upregulation of c-Myc and was directly regulated by c-Myc in breast cancer cells. Knockdown of HSPC111 dramatically reduced the occurrence of tumorigenesis in vivo, and largely restrained tumor cell growth in vitro and in vivo. In stark contrast, HSPC111 overexpression significantly promoted tumor cell growth. Biochemically, it was demonstrated that RNA 3'-phosphate cyclase (RTCD1/RTCA) interacted with HSPC111, and RTCD1 was involved in the HSPC111 multiprotein complex in regulating rRNA production and ribosomal biogenesis. Moreover, HSPC111 and RTCD1 synergistically modulated cell growth and cellular size through commanding rRNA synthesis and ribosome assembly coupled to protein production. Finally, overall survival analysis revealed that concomitant upregulation of HSPC111 and RTCD1 correlated with the worst prognosis in a breast cancer cohort.

Implications: Inhibition of HSPC111-dependent ribosomal biosynthesis and protein synthesis is a promising therapeutic strategy to diminish breast cancer tumor progression. Mol Cancer Res; 12(4); 583–94. ©2014 AACR.


PAX5, a transcription factor pivotal for B-cell commitment and maintenance, is one of the most frequent targets of somatic mutations in B-cell precursor acute lymphoblastic leukemia. A number of PAX5 rearrangements result in the expression of in-frame fusion genes encoding chimeric proteins, which at the N-terminus consistently retain the PAX5 DNA-binding paired domain fused to the C-terminal domains of a markedly heterogeneous group of fusion partners. PAX5 fusion proteins are thought to function as aberrant transcription factors, which antagonize wild-type PAX5 activity. To gain mechanistic insight into the role of PAX5 fusion proteins in leukemogenesis, the biochemical and functional properties of uncharacterized fusions: PAX5–DACH1, PAX5–DACH2, PAX5–ETV6, PAX5–HIPK1, and PAX5–POM121 were ascertained. Independent of the subcellular distribution of the wild-type partner proteins, ectopic expression of all PAX5 fusion proteins showed a predominant nuclear localization, and by chromatin immunoprecipitation all of the chimeric proteins exhibited binding to endogenous PAX5 target sequences. Furthermore, consistent with the presence of potential oligomerization motifs provided by the partner proteins, the self-interaction capability of several fusion proteins was confirmed. Remarkably, a subset of the PAX5 fusion proteins conferred CD79A promoter activity; however, in contrast with wild-type PAX5, the fusion proteins were unable to induce Cd79a transcription in a murine plasmacytoma cell line. These data show that leukemia-associated PAX5 fusion proteins share some dominating characteristics such as nuclear localization and DNA binding but also show distinctive features.

Implications: This comparative study of multiple PAX5 fusion proteins demonstrates both common and unique properties, which likely dictate their function and impact on leukemia development. Mol Cancer Res; 12(4); 595–606. ©2014 AACR.


Annexin A1 (AnxA1), a phospholipid-binding protein and regulator of glucocorticoid-induced inflammatory signaling, has implications in cancer. Here, a role for AnxA1 in prostate adenocarcinoma was determined using primary cultures and a tumor cell line (cE1), all derived from the conditional Pten deletion mouse model of prostate cancer. AnxA1 secretion by prostate-derived cancer-associated fibroblasts (CAF) was significantly higher than by normal prostate fibroblasts (NPF). Prostate tumor cells were sorted to enrich for epithelial subpopulations based on nonhematopoietic lineage, high SCA-1, and high or medium levels of CD49f. Compared with controls, AnxA1 enhanced stem cell–like properties in high- and medium-expression subpopulations of sorted cE1 and primary cells, in vitro, through formation of greater number of spheroids with increased complexity, and in vivo, through generation of more, larger, and histologically complex glandular structures, along with increased expression of p63, a basal/progenitor marker. The differentiated medium-expression subpopulations from cE1 and primary cells were most susceptible to gain stem cell–like properties as shown by increased spheroid and glandular formation. Further supporting this increased plasticity, AnxA1 was shown to regulate epithelial-to-mesenchymal transition in cE1 cells. These results suggest that CAF-secreted AnxA1 contributes to tumor stem cell dynamics via two separate but complementary pathways: induction of a dedifferentiation process leading to generation of stem-like cells from a subpopulation of cancer epithelial cells and stimulation of proliferation and differentiation of the cancer stem-like cells.

Implications: AnxA1 participates in a paradigm in which malignant prostate epithelial cells that are not cancer stem cells are induced to gain cancer stem cell–like properties. Mol Cancer Res; 12(4); 607–21. ©2014 AACR.


STK11/LKB1, a serine/threonine protein kinase and tumor suppressor, is a key upstream kinase of adenine monophosphate-activated protein kinase, which is a kinase involved in controlling cell polarity and maintaining cellular energy homeostasis. LKB1 is mutated in a significant number of Peutz–Jeghers syndrome (PJS) cases and sporadic cancers, and is most frequently mutated in lung adenocarcinomas; however, little is known about how LKB1 is involved in lung cancer progression. In this study, immunoprecipitation-HPLC tandem mass spectrometry (IP-LC-MS/MS) was performed to identify novel proteins interacting with LKB1 in lung cancer. Interestingly, many LKB1-interacting proteins acquired from the LC-MS/MS approach were mapped, using MetaCore pathway analysis, to the cystic fibrosis transmembrane conductance regulator activation pathway. Moreover, it was determined that LKB1 directly interacts with APC, and this LKB1–APC interaction was further confirmed by reverse immunoprecipitation assays, but GSK3β was dispensable for the association of LKB1 and APC. Importantly, LKB1 binds to APC to suppress the Wnt/β-catenin signaling pathway, which is known to be involved in cell proliferation and migration. Subsequent analysis of the downstream targets of the Wnt/TCF pathway led to the identification of several Wnt-regulated genes, such as CD44, COX-2, survivin, and c-Myc, whose expression levels are downregulated by LKB1. In summary, these results demonstrate that LKB1 regulates the Wnt pathway through a direct interaction with APC to suppress the tumorigenic/metastatic potential of lung tumors.

Implications: LKB1 status influences the molecular circuitry (Wnt/β-catenin pathway), cellular biology, and may serve as a potential therapeutic node in genetically defined subsets of lung cancer. Mol Cancer Res; 12(4); 622–35. ©2014 AACR.