• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources


Molecular Biology of the Cell

Molecular Cancer Research RSS feed -- current issue
Molecular Cancer Research

Cancer is characterized by mutations, genome rearrangements, epigenetic changes, and altered gene expression that enhance cell proliferation, invasion, and metastasis. To accommodate deregulated cellular proliferation, many DNA replication-initiation proteins are overexpressed in human cancers. However, the mechanism that represses the expression of these proteins in normal cells and the cellular changes that result in their overexpression are largely unknown. One possible mechanism is through miRNA expression differences. Here, it is demonstrated that miR26a and miR26b inhibit replication licensing and the proliferation, migration, and invasion of lung cancer cells by targeting CDC6. Importantly, miR26a/b expression is significantly decreased in human lung cancer tissue specimens compared with the paired adjacent normal tissues, and miR26a/b downregulation and the consequential upregulation of CDC6 are associated with poorer prognosis of patients with lung cancer. These results indicate that miR26a/b repress replication licensing and tumorigenesis by targeting CDC6.

Implications: The current study suggests that miR26a, miR26b, and CDC6 and factors regulating their expression represent potential cancer diagnostic and prognostic markers as well as anticancer targets. Mol Cancer Res; 12(11); 1535–46. ©2014 AACR.

Glioblastoma (GBM) remains the most aggressive primary brain cancer in adults. Similar to other cancers, GBM cells undergo metabolic reprogramming to promote proliferation and survival. Glycolytic inhibition is widely used to target such reprogramming. However, the stability of glycolytic inhibition in GBM remains unclear especially in a hypoxic tumor microenvironment. In this study, it was determined that glucose-6–phosphatase (G6PC/G6Pase) expression is elevated in GBM when compared with normal brain. Human-derived brain tumor–initiating cells (BTIC) use this enzyme to counteract glycolytic inhibition induced by 2-deoxy-d-glucose (2DG) and sustain malignant progression. Downregulation of G6PC renders the majority of these cells unable to survive glycolytic inhibition, and promotes glycogen accumulation through the activation of glycogen synthase (GYS1) and inhibition of glycogen phosphorylase (PYGL). Moreover, BTICs that survive G6PC knockdown are less aggressive (reduced migration, invasion, proliferation, and increased astrocytic differentiation). Collectively, these findings establish G6PC as a key enzyme with promalignant functional consequences that has not been previously reported in GBM and identify it as a potential therapeutic target.

Implications: This study is the first to demonstrate a functional relationship between the critical gluconeogenic and glycogenolytic enzyme G6PC with the metabolic adaptations during GBM invasion. Mol Cancer Res; 12(11); 1547–59. ©2014 AACR.

Bioactive lipids are fundamental mediators of a number of critical biologic processes such as inflammation, proliferation, and apoptosis. Rhabdomyosarcoma (RMS) is common in adolescence with histologic subtypes that favor metastasis. However, the factors that influence metastasis are not well appreciated. Here, it is shown that lysophosphatidylcholine (LPC) and its derivative, lysophosphatidic acid (LPA), strongly enhance motility and adhesion of human RMS cells. Importantly, these metastatic-associated phenotypes were observed at physiologic concentrations of these lipids, which naturally occur in biologic fluids. Moreover, the effects of these bioactive lipids were much stronger as compared with known peptide-based prometastatic factors in RMS, such as stromal-derived factor-1 or hepatocyte growth factor/scatter factor. Finally, both LPC and LPA levels were increased in several organs after -irradiation or chemotherapy, supporting the hypothesis that radio/chemotherapy induces an unwanted prometastatic environment in these organs.

Implications: LPC and LPA play a previously underappreciated role in dissemination of RMS and suggest that antimetastatic treatment with specific molecules blocking LPC/LPA activity should be part of standard radio/chemotherapy arsenal. Mol Cancer Res; 12(11); 1560–73. ©2014 AACR.

Malignant rhabdoid tumors (MRT), a pediatric cancer that most frequently appears in the kidney and brain, generally lack SNF5 (SMARCB1/INI1), a subunit of the SWI/SNF chromatin-remodeling complex. Recent studies have established that multiple SWI/SNF complexes exist due to the presence or absence of different complex members. Therefore, the effect of SNF5 loss upon SWI/SNF complex formation was investigated in human MRT cells. MRT cells and primary human tumors exhibited reduced levels of many complex proteins. Furthermore, reexpression of SNF5 increased SWI/SNF complex protein levels without concomitant increases in mRNA. Proteomic analysis, using mass spectrometry, of MRT cells before and after SNF5 reexpression indicated the recruitment of different components into the complex along with the expulsion of others. IP–Western blotting confirmed these results and demonstrated similar changes in other MRT cell lines. Finally, reduced expression of SNF5 in normal human fibroblasts led to altered levels of these same complex members. These data establish that SNF5 loss during MRT development alters the repertoire of available SWI/SNF complexes, generally disrupting those associated with cellular differentiation. These findings support a model where SNF5 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones. Therefore, restoration of these complexes in tumors cells provides an attractive approach for the treatment of MRTs.

Implications: SNF5 loss dramatically alters SWI/SNF complex composition and prevents formation of complexes required for cellular differentiation. Mol Cancer Res; 12(11); 1574–85. ©2014 AACR.

The interface between the polymerase I–associated factor Rrn3 and the 43-kDa subunit of RNA polymerase I is essential to the recruitment of Pol I to the preinitiation complex on the rDNA promoter. In silico analysis identified an evolutionarily conserved 22 amino acid peptide within rpa43 that is both necessary and sufficient to mediate the interaction between rpa43 and Rrn3. This peptide inhibited rDNA transcription in vitro, while a control peptide did not. To determine the effect of the peptide in cultured cells, the peptide was coupled to the HIV TAT peptide to facilitate transduction into cells. The wild-type peptide, but not control peptides, inhibited Pol I transcription and cell division. In addition, the peptide induced cell death, consistent with other observations that "nucleolar stress" results in the death of tumor cells. The 22mer is a small-molecule inhibitor of rDNA transcription that is specific for the interaction between Rrn3 and rpa43, as such it represents an original way to interfere with cell growth.

Implications: These results demonstrate a potentially novel pharmaceutical target for the therapeutic treatment of cancer cells. Mol Cancer Res; 12(11); 1586–96. ©2014 AACR.

Transforming growth factor beta (TGFβ) proteins are multitasking cytokines, in which high levels at tumor sites generally correlate with poor prognosis in human patients with cancer. Previously, it was reported that TGFβ downregulates the expression of ataxia telangiectasia–mutated (ATM) and mutS homolog 2 (MSH2) in breast cancer cells through an miRNA-mediated mechanism. In this study, expression of a panel of DNA-repair genes was examined, identifying breast cancer 1, early onset (BRCA1) as a target downregulated by TGFβ through the miR181 family. Correlations between the expression levels of TGFβ1 and the miR181/BRCA1 axis were observed in primary breast tumor specimens. By downregulating BRCA1, ATM, and MSH2, TGFβ orchestrates DNA damage response in certain breast cancer cells to induce a "BRCAness" phenotype, including impaired DNA-repair efficiency and synthetic lethality to the inhibition of poly (ADP-ribose) polymerase (PARP). Xenograft tumors with active TGFβ signaling exhibited resistance to the DNA-damaging agent doxorubicin but increased sensitivity to the PARP inhibitor ABT-888. Combination of doxorubicin with ABT-888 significantly improved the treatment efficacy in TGFβ-active tumors. Thus, TGFβ can induce "BRCAness" in certain breast cancers carrying wild-type BRCA genes and enhance the responsiveness to PARP inhibition, and the molecular mechanism behind this is characterized.

Implications: These findings enable better selection of patients with sporadic breast cancer for PARP interventions, which have exhibited beneficial effects in patients carrying BRCA mutations. Mol Cancer Res; 12(11); 1597–609. ©2014 AACR.

Recent evidence implicates the insulin-like growth factor (IGF) pathway in development of Ewing sarcoma, a highly malignant bone and soft-tissue tumor that primarily affects children and young adults. Despite promising results from preclinical studies of therapies that target this pathway, early-phase clinical trials have shown that a significant fraction of patients do not benefit, suggesting that cellular factors determine tumor sensitivity. Using FAIRE-seq, a chromosomal deletion of the PTEN locus in a Ewing sarcoma cell line was identified. In primary tumors, PTEN deficiency was observed in a large subset of cases, although not mediated by large chromosomal deletions. PTEN loss resulted in hyperactivation of the AKT signaling pathway. PTEN rescue led to decreased proliferation, inhibition of colony formation, and increased apoptosis. Strikingly, PTEN loss decreased sensitivity to IGF1R inhibitors but increased responsiveness to temsirolimus, a potent mTOR inhibitor, as marked by induction of autophagy. These results suggest that PTEN is lost in a significant fraction of primary tumors, and this deficiency may have therapeutic consequences by concurrently attenuating responsiveness to IGF1R inhibition while increasing activity of mTOR inhibitors. The identification of PTEN status in the tumors of patients with recurrent disease could help guide the selection of therapies.

Implications: PTEN status in Ewing sarcoma affects cellular responses to IGFI and mTOR-directed therapy, thus justifying its consideration as a biomarker in future clinical trials. Mol Cancer Res; 12(11); 1610–20. ©2014 AACR.

Human melanoma cells displaying distinct PTEN genotypes were used to assess the cellular role of this important tumor-suppressor protein in the antiproliferative response induced by the chemopreventative agent indole-3-carbinol (I3C), a natural indolecarbinol compound derived from the breakdown of glucobrassicin produced in cruciferous vegetables such as broccoli and Brussels sprouts. I3C induced a G1-phase cell-cycle arrest and apoptosis by stabilization of PTEN in human melanoma cells that express wild-type PTEN, but not in cells with mutant or null PTEN genotypes. Importantly, normal human epidermal melanocytes were unaffected by I3C treatment. In wild-type PTEN-expressing melanoma xenografts, formed in athymic mice, I3C inhibited the in vivo tumor growth rate and increased PTEN protein levels in the residual tumors. Mechanistically, I3C disrupted the ubiquitination of PTEN by NEDD4-1 (NEDD4), which prevented the proteasome-mediated degradation of PTEN without altering its transcript levels. RNAi-mediated knockdown of PTEN prevented the I3C-induced apoptotic response, whereas knockdown of NEDD4-1 mimicked the I3C apoptotic response, stabilized PTEN protein levels, and downregulated phosphorylated AKT-1 levels. Co-knockdown of PTEN and NEDD4-1 revealed that I3C-regulated apoptotic signaling through NEDD4-1 requires the presence of the wild-type PTEN protein. Finally, in silico structural modeling, in combination with isothermal titration calorimetry analysis, demonstrated that I3C directly interacts with purified NEDD4-1 protein.

Implications: This study identifies NEDD4-1 as a new I3C target protein, and that the I3C disruption of NEDD4-1 ubiquitination activity triggers the stabilization of the wild-type PTEN tumor suppressor to induce an antiproliferative response in melanoma. Mol Cancer Res; 12(11); 1621–34. ©2014 AACR.

Our understanding of estrogen (17β-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein–coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed 99mTc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of 99mTc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4–1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation 99mTc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery.

Implications: These studies provide a molecular basis to evaluate GPER expression and function as an ER through in vivo imaging. Mol Cancer Res; 12(11); 1635–43. ©2014 AACR.

The role of 17β-estradiol (E2) in breast cancer development and tumor growth has traditionally been attributed exclusively to the activation of estrogen receptor-α (ERα). Although targeted inhibition of ERα is a successful approach for patients with ERα+ breast cancer, many patients fail to respond or become resistant to anti-estrogen therapy. The discovery of the G protein–coupled estrogen receptor (GPER) suggested an additional mechanism through which E2 could exert its effects in breast cancer. Studies have demonstrated clinical correlations between GPER expression in human breast tumor specimens and increased tumor size, distant metastasis, and recurrence, as well as established a proliferative role for GPER in vitro; however, direct in vivo evidence has been lacking. To this end, a GPER-null mutation [GPER knockout (KO)] was introduced, through interbreeding, into a widely used transgenic mouse model of mammary tumorigenesis [MMTV-PyMT (PyMT)]. Early tumor development, assessed by the extent of hyperplasia and proliferation, was not different between GPER wild-type/PyMT (WT/PyMT) and those mice harboring the GPER-null mutation (KO/PyMT). However, by 12 to 13 weeks of age, tumors from KO/PyMT mice were smaller with decreased proliferation compared with those from WT/PyMT mice. Furthermore, tumors from the KO/PyMT mice were of histologically lower grade compared with tumors from their WT counterparts, suggesting less aggressive tumors in the KO/PyMT mice. Finally, KO/PyMT mice displayed dramatically fewer lung metastases compared with WT/PyMT mice. Combined, these data provide the first in vivo evidence that GPER plays a critical role in breast tumor growth and distant metastasis.

Implications: This is the first description of a role for the novel estrogen receptor GPER in breast tumorigenesis and metastasis, demonstrating that it represents a new target in breast cancer diagnosis, prognosis, and therapy. Mol Cancer Res; 12(11); 1644–54. ©2014 AACR.

Colorectal cancer develops from adenomatous precursor lesions by a multistep process that involves several independent mutational events in oncogenes and tumor suppressor genes. Inactivation of the adenomatous polyposis coli (APC) tumor suppressor gene is an early event and a prerequisite for the development of human colorectal adenoma. Previous in vitro studies identified DRO1 (CCDC80) to be a putative tumor suppressor gene that is negatively regulated in colorectal cancers and downregulated upon neoplastic transformation of epithelial cells. To investigate the in vivo role of DRO1 in colorectal carcinogenesis, a constitutive DRO1 knockout mouse model was generated. Disruption of DRO1 did not result in spontaneous intestinal tumor formation, consistent with the notion that DRO1 might have a role in suppressing the development of colon tumors in ApcMin/+ mice, a widely used model for studying the role of APC in intestinal tumorigenesis that is hampered by the fact that mice predominantly develop adenomas in the small intestine and not in the colon. Here, deletion of DRO1 in ApcMin/+ mice results in earlier death, a dramatically increased colonic tumor burden, and frequent development of colorectal carcinoma. Furthermore, enhanced phosphorylation of ERK1/2 is observed in colon epithelium and tumors from DRO1 knockout mice. Thus, this study reveals that inactivation of DRO1 is required for colorectal carcinogenesis in the ApcMin/+ mouse and establishes a new mouse model for the study of colorectal cancer.

Implications: This report characterizes a new mouse model for the study of colorectal cancer and establishes DRO1 (CCDC80) as a tumor suppressor via a mechanism involving ERK phosphorylation. Mol Cancer Res; 12(11); 1655–62. ©2014 AACR.

The widely used immunosuppressant cyclosporin A, a potent calcineurin inhibitor, significantly increases the incidence of cancer in organ transplant patients. Calcineurin signaling is an important mediator of VEGF signaling in endothelial cells. Negative regulation of calcineurin by its endogenous inhibitor, Down Syndrome Candidate Region-1 (DSCR1), suppresses tumor growth and angiogenesis, in contrast to the effect observed after long-term cyclosporin A treatment. Despite the significance of calcineurin signaling in endothelial cells, the consequences of cyclosporin A on tumor angiogenesis have not been investigated. Using an in vivo model of skin carcinogenesis, prolonged treatment with cyclosporin A promoted tumor growth and angiogenesis. The addition of cyclosporin A to endothelial cells in vitro increased proliferation and migration in a calcineurin-independent manner and is associated with increased mitochondrial reactive oxygen species (ROS). Co-treatment with antioxidants significantly abrogated cyclosporin A–induced endothelial cell activation. Furthermore, mice treated with antioxidants were protected against cyclosporin A–mediated tumor progression. Taken together, these findings suggest that cyclosporin A affects endothelial cells in a calcineurin-independent manner to potentiate tumor growth by promoting tumor angiogenesis through increasing mitochondrial ROS production. This work identifies a previously undescribed mechanism underlying a significantly adverse off-target effect of cyclosporin A and suggests that co-treatment with antioxidants would inhibit the tumor-promoting effects of cyclosporin A.

Implications: Targeting the proangiogenic effects of cyclosporin A may be useful in the management of transplant-associated cancers. Mol Cancer Res; 12(11); 1663–76. ©2014 AACR.

Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA–induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type–specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell–specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell–specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2–expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA–treated mice suggests that the prostaglandins PGE2 and PGF are likely candidates for the epithelial cell COX-2–dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type–specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses.

Implications: Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors. Mol Cancer Res; 12(11); 1677–88. ©2014 AACR.