• Home
  • News
  • Calendar
  • About DF/HCC
  • Membership
  • Visitor Center

Member Resources


Toxicological Sciences

Toxicological Sciences - RSS feed of current issue

Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

Considerable concern has been raised regarding research reproducibility both within and outside the scientific community. Several factors possibly contribute to a lack of reproducibility, including a failure to adequately employ statistical considerations during study design, bias in sample selection or subject recruitment, errors in developing data inclusion/exclusion criteria, and flawed statistical analysis. To address some of these issues, several publishers have developed checklists that authors must complete. Others have either enhanced statistical expertise on existing editorial boards, or formed distinct statistics editorial boards. Although the U.S. Environmental Protection Agency, Office of Research and Development, already has a strong Quality Assurance Program, an initiative was undertaken to further strengthen statistics consideration and other factors in study design and also to ensure these same factors are evaluated during the review and approval of study protocols. To raise awareness of the importance of statistical issues and provide a forum for robust discussion, a Community of Practice for Statistics was formed in January 2014. In addition, three working groups were established to develop a series of questions or criteria that should be considered when designing or reviewing experimental, observational, or modeling focused research. This article describes the process used to develop these study design guidance documents, their contents, how they are being employed by the Agency’s research enterprise, and expected benefits to Agency science. The process and guidance documents presented here may be of utility for any research enterprise interested in enhancing the reproducibility of its science.

1-Bromopropane (1-BP) was introduced into the workplace as an alternative to ozone-depleting solvents and increasingly used in manufacturing industry. The potential exposure to 1-BP and the current reports of adverse effects associated with occupational exposure to high levels of 1-BP have increased the need to understand the mechanism of 1-BP toxicity in animal models as a mean of understanding risk in workers. Physiologically based pharmacokinetic (PBPK) model for 1-BP has been developed to examine 2 metabolic pathway assumptions for gas-uptake inhalation study. Based on previous gas-uptake experiments in the Fischer 344 rat, the PBPK model was developed by simulating the 1-BP concentration in a closed chamber. In the model, we tested the hypothesis that metabolism responsibilities were shared by the p450 CYP2E1 and glutathione (GSH) conjugation. The results showed that 2 metabolic pathways adequately simulated 1-BP closed chamber concentration. Furthermore, the above model was tested by simulating the gas-uptake data of the female rats pretreated with 1-aminobenzotrizole, a general P450 suicide inhibitor, or d,l-buthionine (S,R)-sulfoximine, an inhibitor of GSH synthesis, prior to exposure to 800 ppm 1-BP. The comparative investigation on the metabolic pathway of 1-BP through the PBPK modeling in both sexes provides critical information for understanding the role of p450 and GSH in the metabolism of 1-BP and eventually helps to quantitatively extrapolate current animal studies to human.

It was reported that aminochrome induces the formation of alpha synuclein (SNCA) oligomers during dopamine oxidation. We found that DT-diaphorase (NQO1) prevents the formation of SNCA oligomers in the presence of aminochrome determined by Western blot, transmission electron microscopy, circular dichroism, and thioflavin T fluorescence, suggesting a protective role of NQO1 by preventing the formation of SNCA oligomers in dopaminergic neurons. In order to test NQO1 protective role in SNCA neurotoxicity in cellular model, we overexpressed SNCA in both RCSN-3 cells (wild-type) and RCSN-3Nq7 cells, which have constitutive expression of a siRNA against NQO1. The expression of SNCA in RCSN-3SNCA and RCSN-3Nq7SNCA cells increased 4.2- and 4.4-fold, respectively. The overexpression of SNCA in RCSN-3Nq7SNCA cells induces a significant increase in cell death of 2.8- and 3.2-fold when they were incubated with 50 and 70 µM aminochrome, respectively. The cell death was found to be of apoptotic character determined by annexin/propidium iodide technique with flow cytometry and DNA laddering. A Western blot demonstrated that SNCA in RCSN-3SNCA is only found in monomer form both in the presence of 20 µM aminochrome or cell culture medium contrasting with RCSN-3Nq7SNCA cells where the majority SNCA is found as oligomer. The antioligomer compound scyllo-inositol induced a significant decrease in aminochrome-induced cell death in RCSN-3Nq7SNCA cells in comparison to cells incubated in the absence of scyllo-inositol. Our results suggest that NQO1 seems to play an important role in the prevention of aminochrome-induced SNCA oligomer formation and SNCA oligomers neurotoxicity in dopaminergic neurons.

Regions of the brain with high energy requirements are especially sensitive to perturbations in mitochondrial function. Hence, neurotoxicant exposures that target mitochondria in regions of high energy demand have the potential to accelerate mitochondrial damage inherently occurring during the aging process. 1,3-Dinitrobenzene (DNB) is a model neurotoxicant that selectively targets mitochondria in brainstem nuclei innervated by the eighth cranial nerve. This study investigates the role of age in the regional susceptibility of brain mitochondria-related proteins (MRPs) to oxidation following exposure to DNB. Male F344 rats (1 month old [young], 3 months old [adult], 18 months old [aged]) were exposed to 10 mg/kg DNB prior to mitochondrial isolation and histopathology experiments. Using a high-throughput proteomic approach, 3 important region- and age-related increases in DNB-induced MRP oxidation were determined: (1) brainstem mitochondria are x3 more sensitive to DNB-induced oxidation than cortical mitochondria; (2) oxidation of brainstem MRPs is significantly higher than in cortical counterparts; and (3) MRPs from the brainstems of older rats are significantly more oxidized than those from young or adult rats. Furthermore, lower levels of DNB cause signs of intoxication (ataxia, chromodacryorrhea) and vacuolation of the susceptible neuropil in aged animals, while neither is observed in DNB-exposed young rats. Additionally, methemoglobin levels increase significantly in DNB-exposed adult and aged animals, but not young DNB-exposed animals. This suggests that oxidation of key MRPs observed in brainstem of aged animals is necessary for DNB-induced signs of intoxication and lesion formation. These results provide compelling evidence that environmental chemicals such as DNB may aid in the acceleration of injury to specific brain regions by inducing oxidation of sensitive mitochondrial proteins.

Docetaxel (DTX), a taxane drug, has widely been used as an anticancer or antiangiogenesis drug. However, DTX caused side effects, such as vessel damage and phlebitis, which may reduce its clinical therapeutic efficacy. The molecular mechanisms of DTX that cause endothelial dysfunction remain unclear. The aim of this study as to validate the probable mechanisms of DTX-induced endothelial dysfunction in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with DTX (2.5, 5, and 10nM) for 24 h to induce endothelial dysfunction. Stimulation with DTX reduced cell viability in a concentration- and time-dependent manner. DTX upregulated caspase-3 activity and TUNEL-positive cells. DTX treatment also increased PKCβ phosphorylation levels and NADPH oxidase activity, which resulted in ROS formation. However, all of these findings were reversed by PKCβ inhibition and NADPH oxidase repression. Finally, we demonstrated that sotrastaurin (AEB-071), a new PKCβ inhibitor, mitigated DTX-induced oxidative injury in endothelial cells. Our findings from this study provide a probable molecular mechanism of DTX-induced oxidative injury in endothelial cells and a new clinical and therapeutic approach for preventing DTX-mediated vessel injury.

Methamphetamine (METH) is an extremely addictive stimulant drug that is widely used with high potential of abuse. Previous studies have shown that METH exposure damages the nervous system, especially dopaminergic neurons. However, the exact molecular mechanisms of METH-induced neurotoxicity remain unclear. We hypothesized that caspase-11 is involved in METH-induced neuronal apoptosis. We tested our hypothesis by examining the change of caspase-11 protein expression in dopaminergic neurons (PC12 and SH-SY5Y) and in the midbrain of rats exposed to METH with Western blotting. We also determined the effects of blocking caspase-11 expression with wedelolactone (a specific inhibitor of caspase-11) or siRNA on METH-induced apoptosis in PC12 cells and SH-SY5Y cells using Annexin V and TUNEL staining. Furthermore, we observed the protein expression changes of the apoptotic markers, cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP), after silencing the caspase-11 expression in rat midbrain by injecting LV-shcasp11 lentivirus using a stereotaxic positioning system. Results showed that METH exposure increased caspase-11 expression both in vitro and in vivo, with the effects in vitro being dose- and time-dependent. Inhibition of caspase-11 expression with either wedelolactone or siRNAs reduced the number of METH-induced apoptotic cells. In addition, blocking caspase-11 expression inhibited METH-induced activation of caspase-3 and PARP in vitro and in vivo, suggesting that caspase-11/caspase-3 signal pathway is involved in METH-induced neurotoxicity. These results indicate that caspase-11 plays an essential role in METH-induced neuronal apoptosis and may be a potential gene target for therapeutics in METH-caused neurotoxicity.

Cadmium is an established human lung carcinogen with weak mutagenicity. However, the mechanisms underlying cadmium-induced carcinogenesis remain obscure. It has been suggested that epigenetic mechanisms may play a role in cadmium-induced carcinogenesis. In this study, we investigated the effects of cadmium on histone methylation and histone demethylases, and the role of histone methylation in transformation of immortalized normal human bronchial epithelial (BEAS-2B) cells. Exposure to 0.625, 1.25, 2.5, and 5.0 μM of cadmium for 6, 24, and 48 h increased global trimethylated histone H3 on lysine 4 (H3K4me3) and dimethylated histone H3 on lysine 9 (H3K9me2) in BEAS-2B cells compared with untreated cells, and most of these changes remained after the removal of cadmium (P < .05 or P < .01 for most modifications). Meanwhile, cadmium inhibited the activities of histone H3 on lysine 4 (H3K4) and histone H3 on lysine 9 (H3K9) demethylases which were detected by histone demethylation assay. However, there was no significant change in the protein levels of the H3K4 demethylase lysine-specific demethylase 5A (KDM5A) and the H3K9 demethylase lysine-specific demethylase 3A (KDM3A). Interestingly, during transformation of BEAS-2B cells by 20 weeks of exposure to 2.0 μM cadmium as assessed by anchorage-independent growth in soft agar, global H3K4me3, and H3K9me2 were significantly increased at 4 weeks (P < .05 or P < .01), whereas no significant change was observed at 8, 12, 16, and 20 weeks compared with control. Our study suggests that cadmium increases global H3K4me3 and H3K9me2 by inhibiting the activities of histone demethylases, and aberrant histone methylation that occurs early (48 h) and at 4 weeks is associated with cadmium-induced transformation of BEAS-2B cells at the early stage.

Several reports demonstrated that maternal lipopolysaccharide (LPS) exposure at middle gestational stage caused neural tube defects (NTDs). This study investigated the effects of supplementation with vitamin D3 (VitD3) during pregnancy on LPS-induced NTDs. Pregnant mice except controls were ip injected with LPS (25 μg/kg) daily from gestational day (GD)8 to GD12. In LPS+VitD3 group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, a 5-day LPS injection resulted in 62.5% (10/16) of dams and 20.3% of fetuses with NTDs. Additional experiment showed that a 5-day LPS injection downregulated placental proton-coupled folate transporter (pcft) and reduced folate carrier 1 (rfc1), 2 major folate transporters in placentas. Consistent with downregulation of placental folate transporters, folate transport from maternal circulation into embryos was disturbed in LPS-treated mice. Interestingly, VitD3 not only inhibited placental inflammation but also attenuated LPS-induced downregulation of placental folate transporters. Correspondingly, VitD3 markedly improved folate transport from maternal circulation into the embryos. Importantly, supplementation with VitD3 during pregnancy protected mice from LPS-induced NTDs. Taken together, these results suggest that supplementation with VitD3 during pregnancy prevents LPS-induced NTDs through inhibiting placental inflammation and improving folate transport from maternal circulation into the embryos.

We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10–2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1–11.1 µg/cm2) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research.

Although the importance of mitochondrial dysfunction in acute kidney injury (AKI) has been documented, noninvasive early biomarkers of mitochondrial damage are needed. We examined urinary ATP synthase subunit β (ATPSβ) as a biomarker of renal mitochondrial dysfunction during AKI. Mice underwent sham surgery or varying degrees (5, 10, or 15 min ischemia) of ischemia/reperfusion (I/R)-induced AKI. Serum creatinine, BUN, and neutrophil gelatinase-associated lipocalin were elevated only in the 15 min I/R group at 24 h. Immunoblot analysis of urinary ATPSβ revealed two bands (full length ~52 kDa and cleaved ~25 kDa), both confirmed as ATPSβ by LC-MS/MS, that increased at 24 h in 10- and 15-min I/R groups. These changes were associated with mitochondrial dysfunction evidenced by reduced renal cortical expression of mitochondrial proteins, ATPSβ and COX1, proximal tubular oxygen consumption, and ATP. Furthermore, in the 15-min I/R group, urinary ATPSβ was elevated until 72 h before returning to baseline 144 h after reperfusion with recovery of renal function. Evaluation of urinary ATPSβ in a nonalcoholic steatohepatitis model of liver injury only revealed cleaved ATPSβ, suggesting specificity of full-length ATPSβ for renal injury. Immunoblot analyses of patient urine samples collected 36 h after cardiac surgery revealed increased urinary ATPSβ levels in patients with postcardiac surgery-induced AKI. LC-MS/MS urinalysis in human subjects with AKI confirmed increased ATPSβ. These translational studies provide evidence that ATPSβ may be a novel and sensitive urinary biomarker of renal mitochondrial dysfunction and could serve as valuable tool for the testing of potential therapies for AKI and chemical-induced nephrotoxicity.

Endosulfan as a new member of persistent organic pollutants has been shown to induce reproductive dysfunction in various animal models. However, the action mechanism of endosulfan-produced reproductive toxicity remains largely unknown. This study was focused on investigating the reproductive toxicity induced by α-endosulfan and clarifying the role of mitochondria and genotoxic response genes in germ cell apoptosis of Caenorhabditis elegans. Our data showed that endosulfan induced a dose-dependent decrease of life span, fecundity, and hatchability, whereas the germ cell apoptosis was dose-dependently increased. The mitochondria membrane potential was disrupted by endosulfan, leading to a significant increase of germ cell apoptosis in mev-1(kn-1) mutant. However, the apoptotic effects of endosulfan were blocked in mutants of cep-1(w40), egl-1(n487), and hus-1(op241), indicating conserved genotoxic response genes played an essential role in endosulfan-induced germ cell apoptosis. Furthermore, exposure to endosulfan induced the accumulation of HUS-1::GFP foci and the germ cell cycle arrest. These findings provided clear evidence that endosulfan caused significant adverse effects on the reproduction system of C. elegans and increased germ cell apoptosis, which was regulated by mitochondrial dysfunction and DNA damage response genes. This study may help to understand the signal transduction pathways involved in endosulfan-induced reproductive toxicity.

Levels of amyloid beta (Aβ) in the central nervous system are regulated by the balance between its synthesis and degradation. Neprilysin (NEP) is associated with Alzheimer’s disease (AD) by its ability to degrade Aβ. Some studies have involved the exposure to mercury (Hg) in AD pathogenesis; therefore, our aim was to investigate the effects on the anabolism and catabolism of Aβ in differentiated SH-SY5Y cells incubated with 1–20 μM of Hg. Exposure to 20 µM of Hg induced an increase in Aβ-42 secretion, but did not increase the expression of the amyloid precursor protein (APP). Hg incubation (10 and 20 µM) increased NEP protein levels; however, it did not change NEP mRNA levels nor the levels of the amyloid intracellular domain peptide, a protein fragment with transcriptional activity. Interestingly, Hg reduced NEP activity at 10 and 20 µM, and circular dichroism analysis using human recombinant NEP showed conformational changes after incubation with molar equivalents of Hg. This suggests that the Hg-induced inhibition of NEP activity may be mediated by a conformational change resulting in reduced Aβ-42 degradation. Finally, the comparative effects of lead (Pb, 50 μM) were evaluated. We found a significant increase in Aβ-42 levels and a dramatic increase in APP protein levels; however, no alteration in NEP levels was observed nor in the enzymatic activity of this metalloprotease, despite the fact that Pb slightly modified the rhNEP conformation. Overall, our data suggest that Hg and Pb increase Aβ levels by different mechanisms.

Many drugs and environmental chemicals which are not directly mutagenic have the capacity to increase the incidence of tumors in the liver and other tissues. For this reason, such compounds are known as nongenotoxic carcinogens. The mechanisms underlying their effects remain unclear; however, their capacity to induce oxidative stress is considered to be a critical step in the carcinogenic process, although the evidence that this is actually the case remains equivocal and sparse. We have exploited a novel heme oxygenase-1 reporter mouse to evaluate the capacity of nongenotoxic carcinogens with different mechanisms of action to induce oxidative stress in the liver in vivo. When these compounds were administered at doses reported to cause liver tumors, marked differences in activation of the reporter were observed. 1,4-Dichlorobenzene and nafenopin were strong inducers of oxidative stress, whereas phenobarbital, piperonyl butoxide, cyproterone acetate, and WY14,643 were, at best, only very weak inducers. In the case of phenobarbital and thioacetamide, the number of LacZ-positive hepatocytes increased with time, and for the latter also with dose. The data obtained demonstrate that although some nongenotoxic carcinogens can induce oxidative stress, it is not a dominant feature of the response to these compounds. Therefore in contrast to the current models, these data suggest that oxidative stress is not a key determinant in the mechanism of nongenotoxic carcinogenesis but may contribute to the effects in a compound-specific manner.

Numerous studies have reported on testicular toxicity of phthalates in different experimental paradigms and showed that Leydig cells (LCs) were one of the main targets of phthalate actions. Adverse effects of phthalates on LCs steroidogenesis have been attributed to their metabolites, monophthalates. This study focuses on investigation whether LCs responsiveness to monophthalates action is associated with their potential to produce androgens. We found that of 3 monophthalates investigated [ie, mono-2-ethylhexyl phthalate (MEHP), mono-n-butyl phthalate, and mono-n-benzyl phthalate] only MEHP caused biological effects on the mouse LCs function. This monophthalate stimulated basal steroidogenesis associated with upregulation of StAR protein expression with no effect on hCG-stimulated androgen production by LCs from CBA/Lac and C57BL/6j mouse genotypes were observed. Further, MEHP attenuated ATP production and increased superoxide generation by both phenotypes of mouse LCs that indicated on mitochondrial dysfunction induced by the monophthalate. All together, our data indicate that MEHP-mediated stimulation of steroidogenesis and perturbation in mitochondrial function are not associated with the capacity of the LCs to synthesize androgens. We suggest that this effect of MEHP observed in LCs of rodent origin needs to be taken into consideration in analysis of earlier start of puberty in boys and may highlight a possible influence of phthalates on reproductive health in males.

The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na+-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis.

The degradation of phosphorothioate oligonucleotides (PS-ONDs) and the release of potentially genotoxic modified mononucleotides raise a safety concern for OND-based therapeutics. Deoxyadenosine monophosphorothioate (dAMPαS), a PS nucleotide analog, has been reported to be a potent in vitro mutagen at the thymidine kinase (TK) locus in human TK6 lymphoblastoid cells. This led us to explore the mechanism behind the apparent positive response induced by dAMPαS in the TK gene-mutation assay in TK6 cells. In this work, treatment of TK6 cells with dAMPαS produced a dose-dependent increase in cytotoxicity and mutant frequency at the TK locus. Surprisingly, when the colonies from dAMPαS were re-challenged with the selective agent trifluorothymidine (TFT), the TFT-resistant phenotype was lost. Moreover, dAMPαS-induced colonies displayed distinct growth kinetics and required longer incubation time than 4-nitroquinoline-1-oxide-induced colonies to start growing. Treatment of TK6 cells with dAMPαS induced cell cycle arrest at the G1 phase, enabling cells to grow, and form a colony after the efficacy of TFT in the culture medium was lost. Our findings suggest that a fraction of parental "nonmutant" TK6 cells escaped the toxicity of TFT, possibly via G1 arrest, and resumed growth after the degradation of TFT. We conclude that dAMPαS did not induce real TFT-resistant mutants and caution should be taken with interpretation of mutation data from TK gene-mutation assay in TK6 cells when assessing modified nucleotides.

The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to many flame retardants currently in use and can be used to understand potential vulnerabilities to human health.

1,2-Dichloropropane (1,2-DCP) has recently been reclassified from not classifiable as to its carcinogenicity to humans (Group 3) to carcinogenic to humans (Group 1) by the International Agency for Research on Cancer. This was based on the findings of epidemiological studies in Japan that occupational exposure to paint stripers containing 1,2-DCP was associated with increased cholangiocarcinomas. It is known that 1,2-DCP is negative for cholangiocarcinogenicity in rats and mice. However, its toxicity and carcinogenicity has not been examined in hamsters and little is known about the regulation of its metabolism in hamsters. The purpose of this study was to determine the hepatobiliary toxicity of 1,2-DCP in hamsters and to characterize and compare the altered patterns of hepatic xenometabolic enzymes in hamsters and mice. Male Syrian hamsters and male B6C3F1 mice were treated with various doses of 1,2-DCP for 4 h or 3 days or 4 weeks. These experiments demonstrated that a high dose of 1,2-DCP induced centrilobular hepatocellular necrosis in hamsters. CYP2E1 is possibly the key enzyme responsible for bioactivation and the consequent hepatocytotoxicity of 1,2-DCP, and GSH conjugation catalyzed by GST-T1 may exert a cytoprotective role in hamsters and mice. Notably, the expression pattern of GST-T1 in bile duct epithelial cells differed between hamsters and mice: GST-T1 was expressed in bile duct epithelial cells of mice but not hamsters. This indicates that responses to 1,2-DCP in the bile duct of hamsters might differ from that of mice, and suggests that long-term studies are necessary to clarify the chalangiocarcinogenicity of 1,2-DCP in hamsters, though no biliary toxicity was observed in the present short-term experiments.