Photo of Shiladitya Sengupta,

Shiladitya Sengupta

Brigham And Women's Hospital

Brigham And Women's Hospital
Phone: (617) 768-8994

Shiladitya Sengupta

Brigham And Women's Hospital


  • Assistant Professor, Health Sciences and Technology, Harvard Medical School
  • Associate Professor, Medicine, Harvard Medical School
  • Associate Bioengineer, Medicine, Brigham And Women's Hospital


Research Abstract

Our laboratory is interested in understanding the basic relationships at the cellular level that define a pathological state, and in using this knowledge to develop novel strategies or medicines for treating disease.

How does the cellular microenvironment modulate cellular functions or vice versa? Can the complex sugars that constitute the microenvironment play a cohesive role in intracellular regulation at the protein signaling or genetic levels? These are some key questions that we are probing using novel tools to dissect the complex sugars and connecting what we learn with changes we observe in genetic and protein-signaling. We are using this understanding to engineer novel therapeutic approaches for new drug discovery, for hybrid nanotechnology applications for novel therapeutic strategies, and for regenerative medicine using directed stem cell differentiation.

Reference Publications

Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7957-61. Featured on PNAS Highlights, Forbes, MSN News, CBS, The Telegraph, Yahoo News, Harvard Website.

Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer. 2007 May 7;96(9):1315-9.

Sengupta S*, Eavarone DA*, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. Novel cancer therapy through temporal targeting of both tumor cells and neovasculature using a unique nanoscale delivery system. Nature (2005) 436, 568-572.


Powered by Harvard Catalyst
  • Gupta N, Ansari A, Dhoke GV, Chilamari M, Sivaccumar J, Kumari S, Chatterjee S, Goyal R, Dutta PK, Samarla M, Mukherjee M, Sarkar A, Mandal SK, Rai V, Biswas G, Sengupta A, Roy S, Roy M, Sengupta S. Computationally designed antibody-drug conjugates self-assembled via affinity ligands. Nat Biomed Eng 2019; 3:917-929. PubMed
  • Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, Pinkerton AB, Eton E, Medhi R, Chandrasekar V, Rahman MM, Ichimura T, Gopinath KS, Majumder P, Kohandel M, Sengupta S. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal 2019. PubMed
  • Jang HL, Sengupta S. Transcellular transfer of nanomedicine. Nat Nanotechnol 2019. PubMed
  • Connor Y, Tekleab Y, Tekleab S, Nandakumar S, Bharat D, Sengupta S. A mathematical model of tumor-endothelial interactions in a 3D co-culture. Sci Rep 2019; 9:8429. PubMed
  • Bandaru P, Chu D, Sun W, Lasli S, Zhao C, Hou S, Zhang S, Ni J, Cefaloni G, Ahadian S, Dokmeci MR, Sengupta S, Lee J, Khademhosseini A. A Microfabricated Sandwiching Assay for Nanoliter and High-Throughput Biomarker Screening. Small 2019. PubMed
  • Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S, Khademhosseini A. Organ-on-a-Chip for Cancer and Immune Organs Modeling. Adv Healthc Mater 2019. PubMed
  • Kulkarni A, Chandrasekar V, Natarajan SK, Ramesh A, Pandey P, Nirgud J, Bhatnagar H, Ashok D, Ajay AK, Sengupta S. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng 2019; 2:589-599. PubMed
  • Sengupta S. Cancer Nanomedicine: Lessons for Immuno-Oncology. Trends Cancer 2017; 3:551-560. PubMed
  • Gupta N, Kancharla J, Kaushik S, Ansari A, Hossain S, Goyal R, Pandey M, Sivaccumar J, Hussain S, Sarkar A, Sengupta A, Mandal SK, Roy M, Sengupta S. Development of a facile antibody-drug conjugate platform for increased stability and homogeneity. Chem Sci 2017; 8:2387-2395. PubMed
  • Calibasi Kocal G, Güven S, Foygel K, Goldman A, Chen P, Sengupta S, Paulmurugan R, Baskin Y, Demirci U. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow. Sci Rep 2016; 6:38221. PubMed
  • Kulkarni A, Natarajan SK, Chandrasekar V, Pandey PR, Sengupta S. Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy. ACS Nano 2016. PubMed
  • Kulkarni A, Pandey P, Rao P, Mahmoud A, Goldman A, Sabbisetti V, Parcha S, Natarajan SK, Chandrasekar V, Dinulescu D, Roy S, Sengupta S. Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy. ACS Nano 2016; 10:8154-68. PubMed
  • Goldman A, Kulkarni A, Kohandel M, Pandey P, Rao P, Natarajan SK, Sabbisetti V, Sengupta S. Rationally Designed 2-in-1 Nanoparticles Can Overcome Adaptive Resistance in Cancer. ACS Nano 2016; 10:5823-34. PubMed
  • Boareto M, Jolly MK, Goldman A, Pietilä M, Mani SA, Sengupta S, Ben-Jacob E, Levine H, Onuchic JN. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 2016. PubMed
  • Kulkarni A, Rao P, Natarajan S, Goldman A, Sabbisetti VS, Khater Y, Korimerla N, Chandrasekar V, Mashelkar RA, Sengupta S. Reporter nanoparticle that monitors its anticancer efficacy in real time. Proc Natl Acad Sci U S A 2016. PubMed
  • Molavian HR, Goldman A, Phipps CJ, Kohandel M, Wouters BG, Sengupta S, Sivaloganathan S. Drug-induced reactive oxygen species (ROS) rely on cell membrane properties to exert anticancer effects. Sci Rep 2016; 6:27439. PubMed
  • Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M, Brijwani N, Pinto DD, Prasath A, Shanthappa BU, Thayakumar A, Surendran R, Babu GK, Shenoy AM, Kuriakose MA, Bergthold G, Horowitz P, Loda M, Beroukhim R, Agarwal S, Sengupta S, Sundaram M, Majumder PK. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 2015; 6:6169. PubMed
  • Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, Majumder PK, Sengupta S. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun 2015; 6:6139. PubMed
  • Pandey A, Sarangi S, Chien K, Sengupta P, Papa AL, Basu S, Sengupta S. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery. Nanotechnology 2014; 25:445101. PubMed
  • Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, Phipps C, Kopparam J, Oh M, Basu S, Kohandel M, Sengupta S. Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy. Cancer Res 2014; 74:675-85. PubMed
  • Papa AL, Sidiqui A, Balasubramanian SU, Sarangi S, Luchette M, Sengupta S, Harfouche R. PEGylated liposomal Gemcitabine: insights into a potential breast cancer therapeutic. Cell Oncol (Dordr) 2013; 36:449-57. PubMed
  • Kulkarni AA, Roy B, Rao PS, Wyant GA, Mahmoud A, Ramachandran M, Sengupta P, Goldman A, Kotamraju VR, Basu S, Mashelkar RA, Ruoslahti E, Dinulescu DM, Sengupta S. Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy. Cancer Res 2013; 73:6987-97. PubMed
  • Sengupta S, Kulkarni A. Design principles for clinical efficacy of cancer nanomedicine: a look into the basics. ACS Nano 2013; 7:2878-82. PubMed
  • Sarangi S, Pandey A, Papa AL, Sengupta P, Kopparam J, Dadwal U, Basu S, Sengupta S. P2Y12 receptor inhibition augments cytotoxic effects of cisplatin in breast cancer. Med Oncol 2013; 30:567. PubMed
  • Sengupta P, Basu S, Soni S, Pandey A, Roy B, Oh MS, Chin KT, Paraskar AS, Sarangi S, Connor Y, Sabbisetti VS, Kopparam J, Kulkarni A, Muto K, Amarasiriwardena C, Jayawardene I, Lupoli N, Dinulescu DM, Bonventre JV, Mashelkar RA, Sengupta S. Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci U S A 2012; 109:11294-9. PubMed
  • Papa AL, Basu S, Sengupta P, Banerjee D, Sengupta S, Harfouche R. Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells. BMC Cancer 2013; 12:419. PubMed
  • Sengupta P, Basu S, Sengupta S. Cancer, signal transduction and nanotechnology. 2011. PubMed
  • Piecewicz S, Sengupta S. The dynamic glycome microenvironment and stem cell differentiation into vasculature. Stem Cells Dev 2011. PubMed
  • Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. 2011; 3:3. PubMed
  • Sinha Roy R, Soni S, Harfouche R, Vasudevan PR, Holmes O, de Jonge H, Rowe A, Paraskar A, Hentschel DM, Chirgadze D, Blundell TL, Gherardi E, Mashelkar RA, Sengupta S. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis. Proc Natl Acad Sci U S A 2010; 107:13608-13. PubMed
  • Paraskar AS, Soni S, Chin KT, Chaudhuri P, Muto KW, Berkowitz J, Handlogten MW, Alves NJ, Bilgicer B, Dinulescu DM, Mashelkar RA, Sengupta S. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci U S A 2010; 107:12435-40. PubMed
  • Agarwal S, Dugar D, Sengupta S. Ranking chemical structures for drug discovery: a new machine learning approach. J Chem Inf Model 2010; 50:716-31. PubMed
  • Chaudhuri P, Harfouche R, Soni S, Hentschel DM, Sengupta S. Shape effect of carbon nanovectors on angiogenesis. ACS Nano 2010; 4:574-82. PubMed
  • Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 2009; 21:025102. PubMed
  • Harfouche R, Hentschel DM, Piecewicz S, Basu S, Print C, Eavarone D, Kiziltepe T, Sasisekharan R, Sengupta S. Glycome and transcriptome regulation of vasculogenesis. Circulation 2009; 120:1883-92. PubMed
  • Basu S, Chaudhuri P, Sengupta S. Targeting oncogenic signaling pathways by exploiting nanotechnology. Cell Cycle 2009; 8:3480-7. PubMed
  • Bocangel D, Sengupta S, Mitra S, Bhakat KK. p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 2009; 29:3741-50. PubMed
  • Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano 2009; 3:2505-14. PubMed
  • Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S.. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A 2009; 106:7957-61.
  • Connor Y, Tekleab S, Nandakumar S, Walls C, Tekleab Y, Husain A, Gadish O, Sabbisetti V, Kaushik S, Sehrawat S, Kulkarni A, Dvorak H, Zetter B, R Edelman E, Sengupta S. Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat Commun 2015; 6:8671. PubMed