Photo of Andrew B. Lassar,   Ph.D.

Andrew B. Lassar, Ph.D.

Harvard Medical School

Harvard Medical School
Phone: (617) 432-3831
Fax: (617) 738-0516


andrew_lassar@hms.harvard.edu

Andrew B. Lassar, Ph.D.

Harvard Medical School

EDUCATIONAL TITLES

  • Professor, Biological Chemistry and Molecular Pharmacology, Harvard Medical School

DF/HCC PROGRAM AFFILIATION

Research Abstract

The overarching goal of the Lassar lab is to understand how different cells types (i.e., articular or epiphyseal chondrocytes, ligaments and synoviocytes) emerge from a common precursor population during the formation of the synovial joint. Towards this goal, work in the Lassar lab focuses on the transcriptional regulatory pathways that regulate chondrocyte formation and maturation, elucidation of how mechanical loading regulates gene expression in the joint, and a molecular dissection of the signals and transcription factors that maintain articular cartilage stem cells. We are studying how the initial cartilage template is induced in the embryo and are trying to elucidate how chondrocytes “decide” whether to undergo maturation, which leads to endochondral ossification, or remain immature, as in the articular cartilage of our joints. The Lassar lab identified a stem cell population for articular cartilage; and we are employing genome-wide ATAC-Seq, Cut&Run-Seq, and RNA-Seq methodologies to elucidate the transcriptional regulators that control both the induction and maintenance of these stem cells.

Identification of factors that are necessary for Sox9 to activate the chondrogenic differentiation program. The transcription factor Sox9 is critical for mesenchymal cells to commit to and execute the chondrogenic differentiation program; in its absence chondrogenesis is blocked. Sox9 both directly activates chondrocyte differentiation markers and induces the expression of Sox5 and Sox6, which work together with Sox9 to activate the chondrocyte differentiation program. However, in addition to its essential role in initiating the chondrogenic differentiation program, Sox9 is also expressed in a number of other cells types, including neural stem cells, oligodendrocyte precursors, intestinal stem cells, hair follicle stem cells, and the developing testis. Taken together, these findings indicate that the ability of Sox9 to induce the chondrocyte differentiation program is context dependent, suggesting that additional factors are necessary for Sox9 to activate chondrocyte-specific transcriptional targets. We have recently identified additional chondrogenic competence factors; and are studying how these factors establish the competence for Sox9 to induce chondrocyte formation.

Identification of a transcriptional network that controls the formation and maintenance of articular cartilage stem cells. Lineage tracing studies have suggested that growth plate and articular chondrocytes arise from distinct progenitor populations, such that articular chondrocytes share a common origin with synovial cells that line the joint cavity. The superficial-most layer of articular cartilage is distinguished from deeper layers by expression of lubricin, which is encoded by the Prg4 locus. Prior work by the Lassar lab and others indicated that Prg4-expressing cells in embryonic and early post-natal joints constitute a progenitor pool for all regions of the articular cartilage in the adult. Recently, we identified Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF- and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF- By engineering mice that either lack Creb5 function, or mis-express this transcription factor in the developing limb bud mesenchyme, we have found that Creb5 is necessary to initiate the expression of signaling molecules that both direct the formation of synovial joints and guide perichondrial tissue to form articular cartilage instead of bone. In addition, we have found that Creb5 function is critical to maintain the articular cartilage stem cell population in postnatal mice. We are currently determining both what signals regulate Creb5 expression and elucidating how Creb5 works with other transcriptional regulators to regulate both the formation and maintenance of articular cartilage stem cells; with the goal of employing this knowledge to restore articular cartilage stem cells in degenerating joint tissue.

Publications from Harvard Catalyst Profiles

Powered by Harvard Catalyst
  • Nishimori S, Lai F, Shiraishi M, Kobayashi T, Kozhemyakina E, Yao TP, Lassar AB, Kronenberg HM. PTHrP targets HDAC4 and HDAC5 to repress chondrocyte hypertrophy. JCI Insight 2019. PubMed
  • Li L, Newton PT, Bouderlique T, Sejnohova M, Zikmund T, Kozhemyakina E, Xie M, Krivanek J, Kaiser J, Qian H, Dyachuk V, Lassar AB, Warman ML, Barenius B, Adameyko I, Chagin AS. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J. 2016. PubMed
  • Kozhemyakina E, Zhang M, Ionescu A, Ayturk UM, Ono N, Kobayashi A, Kronenberg H, Warman ML, Lassar AB. Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. 2015. PubMed
  • Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. PubMed
  • Daoud G, Kempf H, Kumar D, Kozhemyakina E, Holowacz T, Kim DW, Ionescu A, Lassar AB. BMP-mediated induction of GATA4/5/6 blocks somitic responsiveness to SHH. Development 2014; 141:3978-87. PubMed
  • Kumar D, Lassar AB. Fibroblast growth factor maintains chondrogenic potential of limb bud mesenchymal cells by modulating DNMT3A recruitment. Cell Rep 2014; 8:1419-31. PubMed
  • Ogawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev 2014; 28:127-39. PubMed
  • Kozhemyakina E, Ionescu A, Lassar AB. GATA6 is a crucial regulator of Shh in the limb bud. PLoS Genet. 2014; 10:e1004072. PubMed
  • Clark CD, Zhang B, Lee B, Evans SI, Lassar AB, Lee KH. Evolutionary conservation of Nkx2.5 autoregulation in the second heart field. Dev Biol 2013. PubMed
  • Ionescu A, Kozhemyakina E, Nicolae C, Kaestner KH, Olsen BR, Lassar AB. FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program. Dev Cell 2012; 22:927-39. PubMed
  • Kamei CN, Kempf H, Yelin R, Daoud G, James RG, Lassar AB, Tabin CJ, Schultheiss TM. Promotion of avian endothelial cell differentiation by GATA transcription factors. Dev Biol 2011. PubMed
  • Lassar AB. The p38 MAPK family, a pushmi-pullyu of skeletal muscle differentiation. J Cell Biol 2009; 187:941-3. PubMed
  • Kozhemyakina E, Cohen T, Yao TP, Lassar AB. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol 2009; 29:5751-62. PubMed
  • Kumar D,Lassar AB. The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol Cell Biol 2009; 29:4262-73. PubMed
  • Kumar D,Shadrach JL,Wagers AJ,Lassar AB. Id3 Is a Direct Transcriptional Target of Pax7 in Quiescent Satellite Cells. Mol Biol Cell 2009. PubMed
  • Cairns DM,Sato ME,Lee PG,Lassar AB,Zeng L. A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol 2008; 323:152-65. PubMed
  • Kempf H, Ionescu A, Udager AM, Lassar AB. Prochondrogenic signals induce a competence for Runx2 to activate hypertrophic chondrocyte gene expression. Dev Dyn 2007; 236:1954-62. PubMed
  • Holowacz T, Zeng L, Lassar AB. Asymmetric localization of numb in the chick somite and the influence of myogenic signals. Dev Dyn 2006; 235:633-45. PubMed
  • Provot S, Kempf H, Murtaugh LC, Chung UI, Kim DW, Chyung J, Kronenberg HM, Lassar AB. Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development 2006; 133:651-62. PubMed
Hide